

BMS INSTITUTE OF TECHNOLOGY

YELAHANKA, BANGALORE

Operating Systems

SUBJECT CODE: 18CS43

PREPARED BY

PROF.S.MAHALAKSHMI

ASST.PROF

DEPARTMENT OF ISE

TABLE OF CONTENTS

sLsL Sl.No Module Pg.No

1. Module-1 1-150

2. Module-2 151-264

3. Module-3 265- 366

4. Module-4 367-512

5. Module-5 513-551

15CS64 Operating Systems

AY:2019-20 Even

Prepared by
Prof.S.Mahalakshmi

AP/ISE

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Course Outcomes
• Acquire the knowledge on the need of OS, types, structures

and its services.

• Understand the concepts involved in process, memory,
device and file management

• Apply suitable techniques for management of different
resources

• Analyse how deadlock occurs and methods to handle
deadlocks

• Demonstrate the impact of Operating System in social and
Environmental context

Department of ISE Acharya Institute of Technology

Module 1: Introduction
• What Operating Systems Do

• Computer-System
Organization

• Computer-System Architecture

• Operating-System Structure

• Operating-System Operations

• Process Management

• Memory Management

• Storage Management

• Protection and Security

• Distributed Systems

• Special-Purpose Systems

• Computing Environments

• Operating System Services

• User - Operating System interface;

• System calls, Types of system calls;

• System programs

• Operating system design and
implementation

• Operating System structure

• Virtual machines

• Operating System generation;
System boot.

Department of ISE Acharya Institute of Technology

Module 1 Cont..

• Process Management :

• Process concept

• Process scheduling

• Operations on processes

• Inter process communication

10/15/2015 4

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

1.What is an Operating System?

• A program that acts as an intermediary
between a user of a computer and the
computer hardware

• Operating system goals: (User View)

– Execute user programs and make solving user
problems easier

– Make the computer system convenient to use

– Use the computer hardware in an efficient
manner

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Computer System Structure

• Computer system can be divided into four components

– Hardware – provides basic computing resources

• CPU, memory, I/O devices

– Operating system

• Controls and coordinates use of hardware among various
applications and users

– Application programs – define the ways in which the system
resources are used to solve the computing problems of the
users

• Word processors, compilers, web browsers, database
systems, video games

– Users

• People, machines, other computers

BMS Institute of Technology & Mgmt Department of ISE

Four Components of a Computer System

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Operating System : System View

• OS is a resource allocator

– Manages all resources

– Decides between conflicting requests for
efficient and fair resource use

• OS is a control program

– Controls execution of programs to prevent
errors and improper use of the computer

• The one program running at all times on the
computer” is the kernel.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Computer Startup

• bootstrap program is loaded at power-up or
reboot

– Typically stored in ROM or EPROM, generally
known as firmware

– Initializes all aspects of system

– Loads operating system kernel and starts
execution

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

2.Computer System Organization

• Computer-system operation
– One or more CPUs, device controllers connect through

common bus providing access to shared memory

– Concurrent execution of CPUs and devices
competing for memory cycles

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Computer-System Operation
• I/O devices and the CPU can execute concurrently

• Each device controller is in charge of a particular
device type

• Each device controller has a local buffer

• CPU moves data from/to main memory to/from
local buffers

• I/O is from the device to local buffer of controller

• Device controller informs CPU that it has finished
its operation by causing an interrupt

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Common Functions of Interrupts
• Interrupt transfers control to the interrupt service

routine generally, through the interrupt vector,
which contains the addresses of all the service
routines

• Interrupt architecture must save the address of the
interrupted instruction

• Incoming interrupts are disabled while another
interrupt is being processed to prevent a lost
interrupt

• A trap is a software-generated interrupt caused
either by an error or a user request

• An operating system is interrupt driven

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Interrupt Handling

• The operating system preserves the state of
the CPU by storing registers and the program
counter

• Determines which type of interrupt has
occurred:

– polling

– vectored interrupt system

• Separate segments of code determine what
action should be taken for each type of
interrupt

BMS Institute of Technology & Mgmt Department of ISE

Interrupt Timeline

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

I/O Structure
• After I/O starts, control returns to user program only upon I/O

completion

– Wait instruction idles the CPU until the next interrupt

– Wait loop (contention for memory access)

– At most one I/O request is outstanding at a time, no
simultaneous I/O processing

• After I/O starts, control returns to user program without
waiting for I/O completion

– System call – request to the operating system to allow user
to wait for I/O completion

– Device-status table contains entry for each I/O device
indicating its type, address, and state

– Operating system indexes into I/O device table to
determine device status and to modify table entry to
include interrupt

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Direct Memory Access Structure

• Used for high-speed I/O devices able to
transmit information at close to memory
speeds

• Device controller transfers blocks of data from
buffer storage directly to main memory
without CPU intervention

• Only one interrupt is generated per block,
rather than the one interrupt per byte

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Storage Structure
• Main memory – only large storage media that

the CPU can access directly

• Secondary storage – extension of main memory
that provides large nonvolatile storage capacity

• Magnetic disks – rigid metal or glass platters
covered with magnetic recording material

– Disk surface is logically divided into tracks, which are
subdivided into sectors

– The disk controller determines the logical
interaction between the device and the computer

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Storage Hierarchy

• Storage systems organized in hierarchy

– Speed

– Cost

– Volatility

• Caching – copying information into faster
storage system; main memory can be viewed
as a last cache for secondary storage

BMS Institute of Technology & Mgmt Department of ISE

Storage-Device Hierarchy

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

How a Modern Computer Works

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

3.Computer-System Architecture

Single Processor System

Multiprocessor system

Clustered system

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Single Processor Systems
• Most systems use a single general-purpose processor

(PDAs through mainframes)

– Most systems have special-purpose processors as
well

– Eg: disk controller microprocessor, keyboard and
graphics controller

– Special purpose processors do not run user
processes

Note: The use of SPP does not make the single
processor to a multiprocessor

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Multiprocessor Systems
• Multiprocessors systems growing in use and importance

• 2 or more processors, sharing computer bus, memory and
peripheral devices

– Also known as parallel systems, tightly-coupled systems

– Advantages include

1. Increased throughput

• Speed up ratio with N processors ≠ N

2. Economy of scale

3. Increased reliability – graceful degradation or fault tolerance

– Two types

1. Asymmetric Multiprocessing

2. Symmetric Multiprocessing

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Types of Multiprocessor
Asymmetric Symmetric

Each processor is assigned a
specific task

Each processor performs all
task within the OS

Master slave relationship All are peers

Eg: ps/2 server 195 Eg: Solaris
Disadvantage: one CPU may
be idle while another is
overloaded

Difference between SMP & ASMP results from either H/W or S/W

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Symmetric Multiprocessing Architecture

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

A Dual-Core Design

Blade servers are a recent development in
which multiple processor boards, I/O boards,
and networking boards are placed in the
same chassis.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Clustered Systems
• Like multiprocessor systems, but multiple systems working

together

– Usually sharing storage via a LAN or faster interconnect
storage-area network (SAN)

– Provides a high-availability service which survives failures

• Asymmetric clustering has one machine in hot-standby
mode

• Symmetric clustering has multiple nodes running
applications, monitoring each other(uses all available
H/W)

– Some clusters are for high-performance
computing (HPC)

• Applications must be written to use parallelization

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

1.4. Operating System Structure

• Multiprogramming needed for efficiency

– Single user cannot keep CPU and I/O devices busy at
all times

– Multiprogramming organizes jobs (code and data) so
CPU always has one to execute

– A subset of total jobs in system is kept in memory

– One job selected and run via job scheduling

– When it has to wait (for I/O for example), OS
switches to another job

Adv: CPU will never be idle

Disadv: do not provide user interaction

BMS Institute of Technology & Mgmt Department of ISE

 Memory Layout for Multiprogrammed System

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Time sharing Systems
• Timesharing (multitasking) is logical extension in which

CPU switches jobs so frequently that users can interact
with each job while it is running, creating interactive
computing

– Response time should be < 1 second

– Each user has at least one program executing in
memory process

– If several jobs ready to run at the same time  CPU
scheduling

– If processes don’t fit in memory, swapping moves
them in and out to run

– Virtual memory allows execution of processes not
completely in memory

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

1.5. Operating-System Operations

• Interrupt driven by hardware

• Software error or request creates exception or trap

– Division by zero, request for operating system
service

• Other process problems include infinite loop,
processes modifying each other or the operating
system

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

1.5.1 Dual Mode

Dual-mode operation allows OS to protect itself and other
system components

– User mode and kernel mode (supervisor, system or
privileged)

– Mode bit provided by hardware

• 0 kernel mode

• 1 user mode

• Advantages of Dual mode

• Provides ability to distinguish when system is running
user code or kernel code

• Some instructions designated as privileged, only
executable in kernel mode

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

• Whenever a user program request a service from os, a system
call is invoked

– A system call is treated by the H/W as a software
interrupt(trap)

– Ctrl passes through the Interrupt vector to a service
routine in OS and mode bit is set to kernel mode.

– The kernel examines the interrupting instruction to
determine what sys call has occurred?

– A parameter indicates what type of service the user
program is requesting?

– The kernel verifies that the parameters are correct and
legal, executes the request.

– Returns control to the instructions following the Sys call.

if (divisor == 0) {
//Writing a message to stderr, and exiting with failure.
 fprintf(stderr, "Division by zero! Aborting...\n");
exit(EXIT_FAILURE); /* indicate failure.*/ }

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Transition from User to Kernel
Mode

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

1.5.2 Timer

• Timer to prevent infinite loop / process
hogging resources

– Set interrupt after specific period(fixed/variable)

– Operating system decrements counter

– When counter zero generate an interrupt

– Set up before scheduling process to regain control
or terminate program that exceeds allotted time

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

6.Process Management
• A process is a program in execution. Program is a

passive entity, process is an active entity.

• Process needs resources to accomplish its task
– CPU, memory, I/O, files

– Initialization data

• Process termination requires reclaim of any reusable
resources

• Single-threaded process has one program counter
specifying location of next instruction to execute
– Process executes instructions sequentially, one at a

time, until completion

• Multi-threaded process has multiple program
counter each per thread

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Process Management Activities
The operating system is responsible for the following activities in

connection with process management:

1. Scheduling processes and threads on the CPU

2. Creating and deleting both user and system
processes

3. Suspending and resuming processes

4. Providing mechanisms for process
synchronization

5. Providing mechanisms for process
communication

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

7.Memory Management
• Is a large array of words/bytes

• CPU reads instruction from main memory

• All instructions in memory will execute in order

• When the program terminates, mem space is declared
available and next pgm is loaded.

• Memory management activities

1. Keeping track of which parts of memory are currently
being used and by whom

2. Deciding which processes (or parts thereof) and data to
move into and out of memory

3. Allocating and de allocating memory space as needed

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

8. Storage Management-
8.1 File system Mgmt

• OS provides uniform, logical view of
information storage
– Abstracts physical properties to logical storage

unit - file

– Each medium is controlled by device (i.e., disk
drive, tape drive)
• Varying properties include access speed, capacity,

data-transfer rate, access method (sequential or
random)

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

• File-System management
– Files usually organized into directories

– Access control on most systems to determine who
can access what

– OS activities include
1. Creating and deleting files and directories

2. Primitives to manipulate files and dirs

3. Mapping files onto secondary storage

4. Backup files onto stable (non-volatile) storage media

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

8.2. Mass-Storage Management
• Usually disks used to store data that does not fit in main memory or

data that must be kept for a “long” period of time

• Proper management is of central importance

• Entire speed of computer operation hinges on disk subsystem and its
algorithms

• OS activities

1. Free-space management

2. Storage allocation

3. Disk scheduling

• Some storage need not be fast

– Tertiary storage includes optical storage, magnetic tape

– Still must be managed

– Varies between WORM (write-once, read-many-times) and RW
(read-write)

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

8.3 Caching
• Important principle, performed at many levels in

a computer (in hardware, operating system,
software)

• Information in use copied from slower to faster
storage temporarily

• Faster storage (cache) checked first to determine
if information is there

– If it is, information used directly from the cache
(fast)

– If not, data copied to cache and used there

• Cache smaller than storage being cached

– Cache management important design problem

– Cache size and replacement policy

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Performance of Various Levels of Storage

• Movement between levels of storage
hierarchy can be explicit or implicit

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Migration of Integer A from Disk to Register

• Multitasking environments must be careful to use most recent
value, no matter where it is stored in the storage hierarchy

• Multiprocessor environment must provide cache coherency in
hardware such that all CPUs have the most recent value in
their cache

• Distributed environment situation even more complex

– Several copies of a datum can exist

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

8.4 I/O Subsystem
• One purpose of OS is to hide peculiarities of

hardware devices from the user

• I/O subsystem responsible for

1. Memory management of I/O including buffering
(storing data temporarily while it is being
transferred), caching (storing parts of data in
faster storage for performance), spooling (the
overlapping of output of one job with input of
other jobs)

2. General device-driver interface

3. Drivers for specific hardware devices

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

9. Protection and Security
• Protection – any mechanism for controlling access of

processes or users to resources defined by the OS

• Security – defense of the system against internal and
external attacks

– Huge range, including denial-of-service, worms,
viruses, identity theft, theft of service

• Systems generally first distinguish among users, to
determine who can do what

– User identities (user IDs, security IDs) include name
and associated number, one per user

– User ID then associated with all files, processes of that
user to determine access control

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Protection and Security

– Group identifier (group ID) allows set of users to be
defined and controls managed, then also associated with
each process, file

– Privilege escalation allows user to change to effective ID
with more rights

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

10. Distributed Systems
• Collection of separate, possibly heterogeneous, systems networked

together to provide users with access to the various resources.

– Network is a communications path b/w 2 or more systems

– Networks vary by

• Protocols used, distance b/w nodes and transport media

– Based on distance

• Local Area Network (LAN)

• Wide Area Network (WAN)

• Metropolitan Area Network (MAN)

• Network Operating System provides features between systems across
network Communication scheme allows systems to exchange messages

• Illusion of a single system

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

11.Special Purpose systems

• Functions are more limited and objectives is
to deal with limited computations domains

1. Real time Embedded systems

2. Multimedia Systems

3. Hand held Systems

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

11.1Real time Embedded Systems

Specific task with little or no user intervention,
,spend time in monitoring and managing H/W
devices

 General purpose computers with Std OS

 H/W devices with special purpose OS

 H/W devices with ASIC without OS

Almost always run RTOS

Real time system has well defined, fixed time
constraints

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

11.2 Multimedia Systems

• To handle Multimedia Data(audio, video)

• Frames of video must be delivered with
certain time restrictions(30 FPS)

• Applications

–MP3, DVD movies, video conferencing, live
webcasts

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

11.3 Hand held Systems

• PDAs, smart phones,

• limited CPU, memory, power

• Reduced feature set OS, limited I/O

– Web clipping

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

12. Computing Environments

12.1 Traditional computer

– Blurring over time

– Office environment

• PCs connected to a network, terminals attached to mainframe or
minicomputers providing batch and timesharing

• Now portals allowing networked and remote systems access to same
resources

– Home networks

• Used to be single system, then modems

• Now firewalled, networked

BMS Institute of Technology & Mgmt Department of ISE

Computing Environments (Cont)

12.2 Client-Server Computing
 Dumb terminals supplanted by smart PCs

 Many systems now servers, responding to requests generated by
clients

 Compute-server provides an interface to client to request
services (i.e. database)

 File-server provides interface for clients to store and retrieve
files

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Computing Environments..
12.3 Peer-to-Peer Computing

• Another model of distributed system

• P2P does not distinguish clients and servers

– Instead all nodes are considered peers

– May each act as client, server or both

– Node must join P2P network

• Registers its service with central lookup service on
network, or

• Broadcast request for service and respond to requests
for service via discovery protocol

– Examples include Napster and Gnutella

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Computing Environments
12.4 Web Based Computing

• Web has become ubiquitous

• PCs most prevalent devices

• More devices becoming networked to allow
web access

• New category of devices to manage web
traffic among similar servers: load balancers

• Use of operating systems like Windows 95,
client-side, have evolved into Linux and
Windows XP, which can be clients and servers

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Open-Source Operating Systems

• Operating systems made available in source-
code format rather than just binary closed-
source

• Counter to the copy protection and Digital
Rights Management (DRM) movement

• Started by Free Software Foundation (FSF),
which has “copyleft” GNU Public License (GPL)

• Examples include GNU/Linux, BSD UNIX
(including core of Mac OS X), and Sun Solaris

End of Chapter 1

Chapter 2: Operating-System
Structures

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Chapter 2: Operating-System Structures

1. Operating System Services

2. User Operating System Interface

3. System Calls

4. Types of System Calls

5. System Programs

6. Operating System Design and Implementation

7. Operating System Structure

8. Virtual Machines

9. Operating System Debugging

10.Operating System Generation

11.System Boot

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Objectives

• To describe the services an operating system provides to
users, processes, and other systems

• To discuss the various ways of structuring an operating system

• To explain how operating systems are installed and
customized and how they boot

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

1.Operating System Services
• One set of operating-system services provides functions that are helpful to

the user:

– User interface - Almost all operating systems have a user interface (UI)

• Varies between Command-Line (CLI), Graphics User Interface
(GUI), Batch

– Program execution - The system must be able to load a program into
memory and to run that program, end execution, either normally or
abnormally (indicating error)

– I/O operations - A running program may require I/O, which may
involve a file or an I/O device

– File-system manipulation - The file system is of particular interest.
Obviously, programs need to read and write files and directories,
create and delete them, search them, list file Information, permission
management.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Operating System Services (Cont)

– Communications – Processes may exchange information,
on the same computer or between computers over a
network

• Communications may be via shared memory or through
message passing (packets moved by the OS)

– Error detection – OS needs to be constantly aware of
possible errors

• May occur in the CPU and memory hardware, in I/O
devices, in user program

• For each type of error, OS should take the appropriate
action to ensure correct and consistent computing

• Debugging facilities can greatly enhance the user’s and
programmer’s abilities to efficiently use the system

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

A View of Operating System
Services

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Operating System Services (Cont)
• Another set of OS functions exists for ensuring the efficient operation

of the system itself via resource sharing

– Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

• Many types of resources - Some (such as CPU cycles, main
memory, and file storage) may have special allocation code,
others (such as I/O devices) may have general request and
release code

– Accounting - To keep track of which users use how much and what
kinds of computer resources

– Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use
of that information, concurrent processes should not interfere with
each other

• Protection involves ensuring that all access to system resources
is controlled

• Security of the system from outsiders requires user
authentication, extends to defending external I/O devices from
invalid access attempts

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

 2.User Operating System Interface - CLI

Command Line Interface (CLI) or command
interpreter allows direct command entry

• Sometimes implemented in kernel, sometimes
by systems program

• Sometimes multiple flavors of command
interpreter implemented – shells

• Primarily fetches a command from user and
executes it
– Sometimes commands built-in, sometimes just

names of programs

» If the latter, adding new features doesn’t require
shell modification

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

 User Operating System Interface - GUI

• User-friendly desktop metaphor interface

– Usually mouse, keyboard, and monitor

– Icons represent files, programs, actions, etc

– Various mouse buttons over objects in the interface cause
various actions (provide information, options, execute
function, open directory (known as a folder)

– Invented at Xerox PARC

• Many systems now include both CLI and GUI interfaces

– Microsoft Windows is GUI with CLI “command” shell

– Apple Mac OS X as “Aqua” GUI interface with UNIX kernel
underneath and shells available

– Solaris is CLI with optional GUI interfaces (Java Desktop,
KDE)

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Bourne Shell Command Interpreter

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

3. System Calls
• Programming interface to the services provided by the OS

• Typically written in a high-level language (C or C++)

• Mostly accessed by programs via a high-level Application
Program Interface (API) rather than direct system call use

• Three most common APIs are Win32 API for Windows, POSIX
API for POSIX-based systems (including virtually all versions of
UNIX, Linux, and Mac OS X), and Java API for the Java virtual
machine (JVM)

• Why use APIs rather than system calls?

– Program Portability

 (Note that the system-call names used throughout this
text are generic)

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Example of System Calls
• System call sequence to copy the contents of

one file to another file

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Example of Standard API

• Consider the ReadFile() function in the Win32 API—a function for reading from a file

• A description of the parameters passed to ReadFile()

– HANDLE file—the file to be read

– LPVOID buffer—a buffer where the data will be read into and written from

– DWORD bytesToRead—the number of bytes to be read into the buffer

– LPDWORD bytesRead—the number of bytes read during the last read

– LPOVERLAPPED ovl—indicates if overlapped I/O is being used

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

System Call Implementation
• Typically, a number associated with each system call

– System-call interface maintains a table indexed according to
these numbers

• The system call interface invokes intended system call in OS
kernel and returns status of the system call and any return
values

• The caller need know nothing about how the system call is
implemented

– Just needs to obey API and understand what OS will do as a
result call

– Most details of OS interface hidden from programmer by API

• Managed by run-time support library (set of functions
built into libraries included with compiler)

BMS Institute of Technology & Mgmt Department of ISE

API – System Call – OS Relationship

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Standard C Library Example

• C program invoking printf() library call,
which calls write() system call

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

System Call Parameter Passing
• Often, more information is required than simply identity of desired

system call

– Exact type and amount of information vary according to OS and
call

• Three general methods used to pass parameters to the OS

1. Simplest: pass the parameters in registers

• In some cases, may be more parameters than registers

2. Parameters stored in a block, or table, in memory, and address
of block passed as a parameter in a register

• This approach taken by Linux and Solaris

3. Parameters placed, or pushed, onto the stack by the program

and popped off the stack by the operating system

Block and stack methods do not limit the number or
length of parameters being passed

BMS Institute of Technology & Mgmt Department of ISE

Parameter Passing via Table

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

4. Types of System Calls

• Process control

– End, abort

– Load, execute

– Create process, terminate process

– Get process attributes, set process attributes

– Wait for time

– Wait event, signal event

– Allocate and free memory

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

• File management

– Create file, delete file

– Open, close

– Read, write, reposition

– Get file attributes, set file attributes

• Device management

– Request device, release device

– Read, write, reposition

– Get device attributes, set device attributes

– Logically attach or detach devices

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

• Information maintenance

– Get time or date, set time or date

– Get system data, set system data

– Get process , file or device attributes

– set process , file or device attributes

• Communications

– Create delete communication connection

– Send, receive message

– Transfer status information

– Attach or detach remote devices

• Protection

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Examples of Windows and Unix System Calls

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

MS-DOS execution

(a) At system startup (b) running a program

BMS Institute of Technology & Mgmt Department of ISE

FreeBSD Running Multiple
Programs

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

5.System Programs
• System programs provide a convenient environment for program

development and execution.

• Also called as System Utilities

• They are divided into

– File manipulation (create, delete, copy…)

– Status information (date, time, logging, debugging)

– File modification (using text editors, commands)

– Programming language support (compilers, assemblers,
debuggers)

– Program loading and execution (absolute loaders, linkage
editors, relocatable loaders)

– Communications(send email, remote login, browse web
pages..)

– Application programs (web browsers, spread sheets..)

• Most users’ view of the operation system is defined by system
programs, not the actual system calls

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

6.Operating System Design and
Implementation

• Design and Implementation of OS not “solvable”, but some
approaches have proven successful

• Design Goals

– Problem in designing a system is to define goals and
specifications

– Will be affected by choice of hardware, type of system

– User goals and System goals

• User goals – operating system should be convenient to
use, easy to learn, reliable, safe, and fast

• System goals – operating system should be easy to
design, implement, and maintain, as well as flexible,
reliable, error-free, and efficient

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Operating System Design and Implementation (Cont)

Mechanism and Policies

 Policy: What will be done?
Mechanism: How to do it?

• The separation of policy from mechanism is a very
important principle, it allows maximum flexibility if policy
decisions are to be changed later

• Identify which is policy and mechanism in the
following?

– Timer construct for CPU protection

– How long the timer to be set for a particular user

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

7. OS structure

• Simple structure

• Layered Approach

• Micro kernels

• Modules

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Simple structure
• Many commercial systems started as simple, small and limited

systems then grew beyond their original scope.(no well
defined structure)

• Eg1MS-DOS – written to provide the most functionality in
the least space

– Not divided into modules

– Although MS-DOS has some structure, its interfaces and
levels of functionality are not well separated

– Limited by hardware , no dual mode, no h/w protection

• Eg2 Traditional Unix system

– Limited by H/w

– 2 seperable parts(kernel, system pgms)

– Monolithic structure was difficult to implement and
maintain

BMS Institute of Technology & Mgmt Department of ISE

MS-DOS Layer Structure

BMS Institute of Technology & Mgmt Department of ISE

Traditional UNIX System Structure

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Layered Approach
• The operating system is divided into a number of layers

(levels),

• each built on top of lower layers.

– The bottom layer (layer 0), is the hardware;

– the highest (layer N) is the user interface.

• Advantages

– Simplicity of construction and debugging

– layers are selected such that each uses functions
(operations) and services of only lower-level layers

– Each layer is implemented with operations provided by
lower layers . Need not to know how it is implemented
(simplify the design and implementation)

BMS Institute of Technology & Mgmt Department of ISE

Layered Operating System

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Layered Approach

• Disadvantages

– Appropriate definition of various layers(eg device
driver << mem mgmt)

– Less efficient than other types (more time on sys
call)

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Microkernel System Structure
• Carnegie Mellon university developed an os called Mach that uses micro

kernel approach

• Structuring the os by removing all non essential components on the
kernel.

• Main functionality  communication b/w client pgm and services that are
running in user space

• Communication takes place between user modules using message passing

• Benefits:

– Easier to extend a microkernel (OS) by adding services to user space

– Easier to port the operating system to new architectures

– More reliable (less code is running in kernel mode)

– More secure

• Detriments:

– Performance overhead of user space to kernel space communication

• Eg: Tru64 UNIX, QNX

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Modules structure

• Most modern operating systems implement kernel modules

– Uses object-oriented approach

– Each core component is separate

– Each talks to the others over known interfaces

– Each is loadable as needed within the kernel

• similar to layers (kernel is defined, protected interfaces)but
with more flexible any module can call any other module

• Similar to microkernel (core functions and knowledge of how
to communicate with other modules) but more efficient bcoz
no message passing

BMS Institute of Technology & Mgmt Department of ISE

Solaris Modular Approach

BMS Institute of Technology & Mgmt Department of ISE

Mac OS X Structure

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

8. Virtual Machines
• The logical conclusion of layered approach leads to virtual

machine.

• The basic idea abstract the H/W of a single computer in
to several different exe environment, thereby creating the
illusion that each separate exe environment is running its
own computer

• A virtual machine provides an interface identical to the
underlying bare hardware

• The operating system host creates the illusion that a
process has its own processor and (virtual) memory

• Each guest provided with a (virtual) copy of underlying
computer

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Virtual Machines History and Benefits
• First appeared commercially in IBM mainframes in 1972

• VM has evolved and still available

BENEFITS

• Fundamentally, multiple execution environments (different
operating systems) can share the same hardware

• Host system is protected from virtual m/c & VM are protected
from each other (no protection problems)

• No direct sharing of resources. It is done in 2 ways

– Network of VM each of which send info over the virtual
comm network

– Share a file system volume and thus share files

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Benefits contd..

• Useful for development, testing and
porting(normal systems are not disrupted)

• Consolidation of many low-resource use
systems onto fewer busier systems

• “Open Virtual Machine Format”, standard
format of virtual machines, allows a VM to run
within many different virtual machine (host)
platforms

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Virtual Machines (Cont)

a) Non virtual machines b) virtual machine

 (a) Nonvirtual machine (b)
virtual machine

Non-virtual Machine Virtual Machine

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Para-virtualization
• Presents guest with system similar but not

identical to hardware

• Guest must be modified to run on
paravirtualized hardware

• Guest can be an OS, or in the case of Solaris 10
applications running in containers or zones.

• Advmore efficient use if resources and a
smaller virtualization layer.

• H/W is not virtualized rather os and its devices
are virtualized

BMS Institute of Technology & Mgmt Department of ISE

Solaris 10 with Two Containers

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Virtual Machine Implementation

• Difficult to implement – must provide an exact
duplicate of underlying machine

– Typically runs in user mode, creates virtual user
mode and virtual kernel mode

• Timing can be an issue – slower than real
machine

• Hardware support needed

– More support-> better virtualization

– i.e. AMD provides “host” and “guest” modes

BMS Institute of Technology & Mgmt Department of ISE

VMware Architecture

BMS Institute of Technology & Mgmt Department of ISE

The Java Virtual Machine

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

9.Operating System Generation
• Operating systems are designed to run on any of a class of

machines; the system must be configured for each specific
computer site

• SYSGEN program obtains information concerning the specific
configuration of the hardware system

• Kinds of info to be determined?

– What CPU to be used? What options are installed? For
multiple CPU each CPU may be described.

– How will the boot disk be formatted? How many sections or
partitions will be separated in to, and what will go into each
partitions?

– How much memory is available?

– What devices are available?

– What OS options are desired?

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

• The previous information is determined and
used in several ways

1. A sys admin can use it to modify a copy of the
source code of OS. The result is tailored

2. System description can lead to the creation of
tables and the selections of modules from a
precompiled library.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

11.System Boot

• Operating system must be made available to
hardware so hardware can start it

– Small piece of code – bootstrap loader, locates
the kernel, loads it into memory, and starts it

– Sometimes two-step process where boot block at
fixed location loads bootstrap loader

– When power initialized on system, execution
starts at a fixed memory location

• Firmware used to hold initial boot code

End of Chapter 2

Chapter 3: Process Management

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Chapter 3: Processes

• Process Concept

• Process Scheduling

• Operations on Processes

• Interprocess Communication

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

1.1Process Concept

• An operating system executes a variety of programs:

– Batch system – jobs

– Time-shared systems – user programs or tasks

• Textbook uses the terms job and process almost
interchangeably

• Process – a program in execution; process execution
must progress in sequential fashion

• A process includes:

– program counter

– stack

– data section

BMS Institute of Technology & Mgmt Department of ISE

Process in Memory

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

1.2Process State

• As a process executes, it changes state

– new: The process is being created

– running: Instructions are being executed

– waiting: The process is waiting for some event to occur

– ready: The process is waiting to be assigned to a processor

– terminated: The process has finished execution

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Diagram of Process State

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

1.3 Process Control Block (PCB)
• Also called as task control block

• Each process is represented in the OS by a PCB

 Information associated with each process

• Process state

• Program counter

• CPU registers

• CPU scheduling information

• Memory-management information

• Accounting information

• I/O status information

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

• Process state new, ready, running, waiting,,,,

• Pgm counter addres of next inst to be executed

• Cpu registers acc, index reg, SP, GPR

– Along with the pgm counter ,this state info to be saved
when an interrupt occurs, to allow the process to be
continued correctly

• CPU scheduling info priority, scheduling queues

• Mem mgmt info value of BR, LR, PT, ST

• Accounting infoamount of CPU and real time used, time
limits, acc no, process no

• I/O status info list of I/O devices allocated, list of open file

BMS Institute of Technology & Mgmt Department of ISE

Process Control Block (PCB)

BMS Institute of Technology & Mgmt Department of ISE

CPU Switch From Process to
Process

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

2.1 Process Scheduling Queues

• Job queue – set of all processes in the
system

• Ready queue – set of all processes
residing in main memory, ready and
waiting to execute

• Device queues – set of processes
waiting for an I/O device

• Processes migrate among the various
queues

BMS Institute of Technology & Mgmt Department of ISE

Ready Queue And Various I/O Device Queues

BMS Institute of Technology & Mgmt Department of ISE

Representation of Process
Scheduling

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

2.2 Schedulers

• Long-term scheduler (or job scheduler)
– selects which processes should be
brought into the ready queue

• Short-term scheduler (or CPU
scheduler) – selects which process
should be executed next and allocates
CPU

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Schedulers (Cont)
• Short-term scheduler is invoked very frequently

(milliseconds)  (must be fast)

• Long-term scheduler is invoked very infrequently
(seconds, minutes)  (may be slow)

• The long-term scheduler controls the degree of
multiprogramming

• Processes can be described as either:

– I/O-bound process – spends more time doing I/O
than computations, many short CPU bursts

– CPU-bound process – spends more time doing
computations; few very long CPU bursts

BMS Institute of Technology & Mgmt Department of ISE

Addition of Medium Term
Scheduling

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

2.3 Context Switch
• When CPU switches to another process, the

system must save the state of the old process
and load the saved state for the new process
via a context switch

• Context of a process represented in the PCB

• Context-switch time is overhead; the system
does no useful work while switching

• Time dependent on hardware support

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Operations on Procesess

• Process Creation

• Process Termination

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

2.3 Process Creation
• Parent process create children processes, which, in turn

create other processes, forming a tree of processes

• Generally, process identified and managed via a process
identifier (pid)

• Resource sharing

– Parent and children share all resources

– Children share subset of parent’s resources

– Parent and child share no resources

• Execution

– Parent and children execute concurrently

– Parent waits until children terminate

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Process Creation (Cont)

• Address space

– Child duplicate of parent

– Child has a program loaded into it

• UNIX examples

– fork system call creates new process

– exec system call used after a fork to replace the
process’ memory space with a new program

BMS Institute of Technology & Mgmt Department of ISE

Process Creation

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

C Program Forking Separate
Process

int main()

{

pid_t pid;

 /* fork another process */

 pid = fork();

 if (pid < 0) { /* error occurred */

 fprintf(stderr, "Fork Failed");

 exit(-1);

 }

 else if (pid == 0) { /* child process */

 execlp("/bin/ls", "ls", NULL);

 }

 else { /* parent process */

 /* parent will wait for the child to complete */

 wait (NULL);

 printf ("Child Complete");

 exit(0);

 }

}

BMS Institute of Technology & Mgmt Department of ISE

A tree of processes on a typical
Solaris

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Process Termination
• Process executes last statement and asks the operating

system to delete it (exit)

– Output data from child to parent (via wait)

– Process’ resources are deallocated by operating system

• Parent may terminate execution of children processes (abort)

– Child has exceeded allocated resources

– Task assigned to child is no longer required

– If parent is exiting

• Some operating system do not allow child to continue
if its parent terminates

– All children terminated - cascading termination

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Interprocess Communication
• Processes within a system may be independent or

cooperating

• Cooperating processes need interprocess communication
(IPC)

• Two models of IPC

– Shared memory

– Message passing

BMS Institute of Technology & Mgmt Department of ISE

Communications Models

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Cooperating Processes
• Independent process cannot affect or be

affected by the execution of another process

• Cooperating process can affect or be affected
by the execution of another process

• Advantages of process cooperation

– Information sharing

– Computation speed-up

– Modularity

– Convenience

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Producer-Consumer Problem

• Paradigm for cooperating processes,
producer process produces
information that is consumed by a
consumer process

– unbounded-buffer places no practical
limit on the size of the buffer

– bounded-buffer assumes that there is a
fixed buffer size

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

• The bounded buffer is implemented as a
circular array with 2 logical pointers: in and
out.
• The variable in points to the next free position

in the buffer.
• The variable out points to the first full

position in the buffer.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Bounded-Buffer – Shared-Memory Solution

• Shared data implemented as circular
array

#define BUFFER_SIZE 10

typedef struct {

 . . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

Solution is correct, but can only use BUFFER_SIZE-1
elements

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Bounded-Buffer – Producer

 while (true) {

 /* Produce an item */

 while (((in = (in + 1) % BUFFER SIZE count) == out)

 ; /* do nothing -- no free buffers */

 buffer[in] = item;

 in = (in + 1) % BUFFER SIZE;

 }

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Bounded Buffer – Consumer

 while (true) {

 while (in == out);

 // do nothing -- nothing to consume

 // remove an item from the buffer

 item = buffer[out];

 out = (out + 1) % BUFFER SIZE;

 return item;

 }

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Interprocess Communication – Message Passing

• Mechanism for processes to communicate and to synchronize
their actions

• Message system – processes communicate with each other
without resorting to shared variables

• IPC facility provides two operations:

– send(message) – message size fixed or variable

– receive(message)

• If P and Q wish to communicate, they need to:

– establish a communication link between them

– exchange messages via send/receive

• Implementation of communication link

– physical (e.g., shared memory, hardware bus)

– logical (e.g., logical properties)

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Implementation Questions
• How are links established?

• Can a link be associated with more than two processes?

• How many links can there be between every pair of
communicating processes?

• What is the capacity of a link?

• Is the size of a message that the link can accommodate fixed or
variable?

• Is a link unidirectional or bi-directional?

• Logical implementations of link and send() and receive
operations

– Direct/indirect communication

– Synchronous / asynchronous communication

– Automatic / explicit buffering

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

1. NAMING: DIRECT COMM
• Processes must name each other explicitly:

– send (P, message) – send a message to process P

– receive(Q, message) – receive a message from
process Q

• Properties of communication link

– Links are established automatically

– A link is associated with exactly one pair of
communicating processes

– Between each pair there exists exactly one link

– The link may be unidirectional, but is usually bi-
directional

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Indirect Communication
• Messages are directed and received from mailboxes (also

referred to as ports)

– Each mailbox has a unique id

– Processes can communicate only if they share a mailbox

• Properties of communication link

– Link established only if processes share a common
mailbox

– A link may be associated with many processes

– Each pair of processes may share several
communication links

– Link may be unidirectional or bi-directional

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Indirect Communication
• Operations

– create a new mailbox

– send and receive messages through mailbox

– destroy a mailbox

• Primitives are defined as:

 send(A, message) – send a message to
mailbox A

 receive(A, message) – receive a message
from mailbox A

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Indirect Communication
• Mailbox sharing

– P1, P2, and P3 share mailbox A

– P1, sends; P2 and P3 receive

– Who gets the message?

• Solutions
– Allow a link to be associated with at most two processes

– Allow only one process at a time to execute a receive
operation

– Allow the system to select arbitrarily the receiver. Sender
is notified who the receiver was.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

2. Synchronization
• Message passing may be either blocking or non-

blocking

• Blocking is considered synchronous

– Blocking send has the sender block until the
message is received

– Blocking receive has the receiver block until a
message is available

• Non-blocking is considered asynchronous

– Non-blocking send has the sender send the
message and continue

– Non-blocking receive has the receiver receive a
valid message or null

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

3.Buffering
• Queue of messages attached to the link;

implemented in one of three ways

1. Zero capacity – queue lengh is 0
Sender must block till the recipient receives
the msg

2. Bounded capacity – finite length of n
messages
Sender must wait if link full

3. Unbounded capacity – infinite length
Sender never waits

End of Chapter 3

Chapter 4: Threads

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Chapter 4: Threads

• Overview

• Multithreading Models

• Thread Libraries

• Threading Issues

• Operating System Examples

• Windows XP Threads

• Linux Threads

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Objectives
• To introduce the notion of a thread — a

fundamental unit of CPU utilization that
forms the basis of multithreaded
computer systems

• To examine issues related to
multithreaded programming

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Threads
• Thread is a light weight process

• A thread is a basic unit of CPU utilization.

• It consists of a thread ID, program counter, a stack, and a set
of registers.

• Process single thread of control heavy weight process
– There is one program counter, and one sequence of instructions that

can be carried out at any given time.

• A multi-threaded application  multiple threads within a
single process light weight process
– each having their own program counter, stack and set of registers,

– but sharing common code, data, and certain structures such as open
files

BMS Institute of Technology & Mgmt Department of ISE

Single and Multithreaded
Processes

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Benefits
• Responsiveness: One thread may provide rapid response while other

threads are blocked or slowed down doing intensive calculations

• Resource Sharing: threads share common code, data, and other

resources, which allows multiple tasks to be performed simultaneously in
a single address space.

• Economy: Creating and managing threads is much faster , Context

switching between threads takes less time

• Scalability: Utilization of multiprocessor architectures

• threads can share common data, they do not need to use
interprocess communication

Draw back

• no protection between threads

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Multicore Programming
• Recently produce chips with multiple cores, or CPUs on

a single chip is a trend.
• The threads could be spread across the available cores,

allowing true parallel processing.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Challenges of Multicore
programming

–Dividing activities

–Balance

–Data splitting

–Data dependency

–Testing and debugging

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Multithreaded Server Architecture

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

User Threads
• Thread management done by user-level

threads library rather than via systems calls so
thread switching does not need to call
operating system and to cause interrupt to the
kernel

• Three primary thread libraries:

– POSIX Pthreads

– Win32 threads

– Java threads

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

• Advantages

– user-level threads package can be implemented on an Operating
System that does not support threads

– User-level threads does not require modification to operating
systems

– Simple representation (PC, registers, stack and a small control
block

– Simple Management (no intervention of kernel)

– Fast and Efficient (Thread switching is not expensive)

• Disadvantages:

– There is a lack of coordination between threads and operating
system kernel. Therefore, process as whole gets one time slice
irrespect of whether process has one thread or 1000 threads
within.

– User-level threads requires non-blocking systems call i.e., a

multithreaded kernel.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Kernel Threads
• Supported by the Kernel

• Instead of thread table in each process, the kernel has a
thread table that keeps track of all threads in the system

• In addition, the kernel also maintains the traditional process
table to keep track of processes

• Operating Systems kernel provides system call to create and
manage threads.

• Examples

– Windows XP/2000

– Solaris

– Linux

– Tru64 UNIX

– Mac OS X

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

• Advantages:

– Because kernel has full knowledge of all threads, Scheduler may
decide to give more time to a process having large number of
threads than process having small number of threads

– Kernel-level threads are especially good for applications that
frequently block

• Disadvantages

– The kernel-level threads are slow and inefficient

– Since kernel must manage and schedule threads as well as
processes. It require a full thread control block (TCB) for each
thread to maintain information about threads.

• As a result there is significant overhead and increased in
kernel complexity.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Multithreading Models

• Many-to-One

• One-to-One

• Many-to-Many

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Many-to-One

• Many user-level threads mapped to single
kernel thread

• Examples:

– Solaris Green Threads

– GNU Portable Threads

BMS Institute of Technology & Mgmt Department of ISE

Many-to-One Model

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

One-to-One

• Each user-level thread maps to kernel thread

• Examples

– Windows NT/XP/2000

– Linux

– Solaris 9 and later

BMS Institute of Technology & Mgmt Department of ISE

One-to-one Model

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Many-to-Many Model

• Allows many user level threads to be
mapped to many kernel threads

• Allows the operating system to create a
sufficient number of kernel threads

• Solaris prior to version 9

• Windows NT/2000 with the ThreadFiber
package

BMS Institute of Technology & Mgmt Department of ISE

Many-to-Many Model

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Two-level Model

• Similar to M:M, except that it allows a
user thread to be bound to kernel thread

• Examples

– IRIX

– HP-UX

– Tru64 UNIX

– Solaris 8 and earlier

BMS Institute of Technology & Mgmt Department of ISE

Two-level Model

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Thread Libraries
• Thread library provides programmer with

API for creating and managing threads

• Two primary ways of implementing

– Library entirely in user space

– Kernel-level library supported by the OS

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Pthreads
• May be provided either as user-level or

kernel-level

• A POSIX standard (IEEE 1003.1c) API for
thread creation and synchronization

• API specifies behavior of the thread
library, implementation is up to
development of the library

• Common in UNIX operating systems
(Solaris, Linux, Mac OS X)

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

P threads example

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Win32 API Multithreaded C
Program

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Java Threads
• Java threads are managed by the JVM

• Typically implemented using the
threads model provided by underlying
OS

• Java threads may be created by:
Extending Thread class

– Implementing the Runnable interface

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Java Multithreaded Program

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Threading Issues

a) Semantics of fork() and exec() system
calls

b) Thread cancellation of target thread

a) Asynchronous or deferred

c) Signal handling

d) Thread pools

e) Thread-specific data

f) Scheduler activations

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

a.Semantics of fork() and exec()

• Does fork() duplicate only the calling thread or
all threads?

• It depends on exec() if called immediately
after fork then duplicating all threads are un
necessary

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

b.Thread Cancellation
• Terminating a thread before it has finished

• Eg. Web page loading, searching a database

• Two general approaches:

– Asynchronous cancellation terminates the
target thread immediately.

• Disadv: may not free necessary system wide
resources

– Deferred cancellation allows the target thread
to periodically check if it should be cancelled.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

c.Signal Handling
• Signals are used in UNIX systems to notify a process that a particular

event has occurred.

• Types

– Synchronous

– Asynchronous

• A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled

• Options:

– Deliver the signal to the thread to which the signal applies

– Deliver the signal to every thread in the process

– Deliver the signal to certain threads in the process

– Assign a specific thread to receive all signals for the process

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

• Synchronous signal is generated by the
same process that performed the operation
that caused the signal and delivered to the
same.

– Eg. Divide by 0, illegal memory access

• Asynchronous signal is generated by an
event external to the running process and
delivered to another process

– Eg: ctrl+c , having a timer to expire

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

d.Thread Pools
• Create a number of threads in a pool

where they await work

• Advantages:

– Usually slightly faster to service a request with
an existing thread than create a new thread

– Allows the number of threads in the
application(s) to be bound to the size of the
pool

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

e.Thread Specific Data
• Allows each thread to have its own copy of

data

• Useful when you do not have control over
the thread creation process (i.e., when
using a thread pool)

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

f.Scheduler Activations

• Both M:M and Two-level models require
communication to maintain the appropriate
number of kernel threads allocated to the
application

• Scheduler activations provide upcalls - a
communication mechanism from the kernel to
the thread library

• This communication allows an application to
maintain the correct number kernel threads

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

End of Chapter 4

Department of ISE BMS Institute of Technology & Mgmt

Module 5: CPU Scheduling

• Basic Concepts

• Scheduling Criteria

• Scheduling Algorithms

• Multiple-Processor Scheduling

• Real-Time Scheduling

• Algorithm Evaluation

Department of ISE BMS Institute of Technology & Mgmt

Basic Concepts

• Maximum CPU utilization obtained with
multiprogramming

• CPU–I/O Burst Cycle – Process execution
consists of a cycle of CPU execution and I/O
wait.

• CPU burst distribution

Department of ISE BMS Institute of Technology & Mgmt

Alternating Sequence of CPU And I/O
Bursts

Department of ISE BMS Institute of Technology & Mgmt

CPU Scheduler

• Selects from among the processes in memory
that are ready to execute, and allocates the CPU
to one of them.

• CPU scheduling decisions may take place when a
process:
1. Switches from running to waiting state.
2. Switches from running to ready state.
3. Switches from waiting to ready.
4. Terminates.

• Scheduling under 1 and 4 is nonpreemptive.
• All other scheduling is preemptive.

Operating System

Concepts

Department of ISE BMS Institute of Technology & Mgmt

Dispatcher

• Dispatcher module gives control of the CPU to
the process selected by the short-term scheduler;
this involves:

– switching context

– switching to user mode

– jumping to the proper location in the user program to
restart that program

• Dispatch latency – time it takes for the dispatcher
to stop one process and start another running.

Operating System

Concepts

Department of ISE BMS Institute of Technology & Mgmt

Scheduling Criteria

• CPU utilization – keep the CPU as busy as possible
• Throughput – # of processes that complete their

execution per time unit
• Turnaround time – amount of time to execute a

particular process
• Waiting time – amount of time a process has been

waiting in the ready queue
• Response time – amount of time it takes from

when a request was submitted until the first
response is produced, not output (for time-
sharing environment)

Department of ISE BMS Institute of Technology & Mgmt

Optimization Criteria

• Max CPU utilization

• Max throughput

• Min turnaround time

• Min waiting time

• Min response time

Department of ISE BMS Institute of Technology & Mgmt

First-Come, First-Served (FCFS)
Scheduling

• Example: Process Burst Time
 P1 24
 P2 3
 P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27
• Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 30 0

Department of ISE BMS Institute of Technology & Mgmt

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
 P2 , P3 , P1 .
• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3
• Average waiting time: (6 + 0 + 3)/3 = 3
• Much better than previous case.
• Good for batch systems, not suitable for time sharing systems.
• Convoy effect short process behind long process

P1 P3 P2

6 3 30 0

Department of ISE BMS Institute of Technology & Mgmt

Shortest-Job-First (SJR) Scheduling

• Associate with each process the length of its next CPU
burst. Use these lengths to schedule the process with
the shortest time.

• Two schemes:
– nonpreemptive – once CPU given to the process it cannot

be preempted until completes its CPU burst.
– Preemptive – if a new process arrives with CPU burst

length less than remaining time of current executing
process, preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF).

• SJF is optimal – gives minimum average waiting time
for a given set of processes.

Department of ISE BMS Institute of Technology & Mgmt

Example of Non-Preemptive SJF

 Process Arrival Time Burst Time
 P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4
• SJF (non-preemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4 - 4

P1 P3 P2

7 3 16 0

P4

8 12

Department of ISE BMS Institute of Technology & Mgmt

Example of Preemptive SJF

 Process Arrival Time Burst Time
 P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4
• SJF (preemptive)

• Average waiting time = (9 + 1 + 0 +2)/4 - 3

P1 P3 P2

4 2 11 0

P4

5 7

P2 P1

16

Department of ISE BMS Institute of Technology & Mgmt

Determining Length of Next CPU Burst

• Can only estimate the length.

• Can be done by using the length of previous
CPU bursts, using exponential averaging.

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of lenght actual 1.











 1n

th
n nt

  .t nnn   11

Department of ISE BMS Institute of Technology & Mgmt

Examples of Exponential Averaging

•  =0
– n+1 = n

– Recent history does not count.

•  =1
– n+1 = tn

– Only the actual last CPU burst counts.

• If we expand the formula, we get:
n+1 =  tn+(1 - )  tn -1 + …
 +(1 - )j  tn -1 + …
 +(1 - )n=1 tn 0

• Since both  and (1 - ) are less than or equal to 1, each
successive term has less weight than its predecessor.

Operating System

Concepts

Department of ISE BMS Institute of Technology & Mgmt

Priority Scheduling

• A priority number (integer) is associated with each
process

• The CPU is allocated to the process with the highest
priority (smallest integer  highest priority).
– Preemptive
– nonpreemptive

• SJF is a priority scheduling where priority is the
predicted next CPU burst time.

• Problem  Starvation – low priority processes may
never execute.

• Solution  Aging – as time progresses increase the
priority of the process.

Operating System

Concepts

Department of ISE BMS Institute of Technology & Mgmt

Round Robin (RR)

• Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to
the end of the ready queue.

• If there are n processes in the ready queue and the
time quantum is q, then each process gets 1/n of the
CPU time in chunks of at most q time units at once. No
process waits more than (n-1)q time units.

• Performance
– q large  FIFO
– q small  q must be large with respect to context switch,

otherwise overhead is too high.

Operating System

Concepts

Department of ISE BMS Institute of Technology & Mgmt

Example: RR with Time Quantum = 20

 Process Burst Time
 P1 53
 P2 17
 P3 68
 P4 24
• The Gantt chart is:

• Typically, higher average turnaround than SJF, but better
response.

Operating System

Concepts

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Department of ISE BMS Institute of Technology & Mgmt

How a Smaller Time Quantum Increases Context Switches

Operating System

Concepts

Department of ISE BMS Institute of Technology & Mgmt

Turnaround Time Varies With The Time Quantum

Operating System

Concepts

Department of ISE BMS Institute of Technology & Mgmt

Multilevel Queue

• Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

• Each queue has its own scheduling algorithm,
foreground – RR
background – FCFS

• Scheduling must be done between the queues.
– Fixed priority scheduling; i.e., serve all from foreground then

from background. Possibility of starvation.
– Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e.,
80% to foreground in RR

– 20% to background in FCFS

Operating System

Concepts

Department of ISE BMS Institute of Technology & Mgmt

Multilevel Queue Scheduling

Operating System

Concepts

Department of ISE BMS Institute of Technology & Mgmt

Multilevel Feedback Queue

• A process can move between the various queues;
aging can be implemented this way.

• Multilevel-feedback-queue scheduler defined by
the following parameters:
– number of queues

– scheduling algorithms for each queue

– method used to determine when to upgrade a process

– method used to determine when to demote a process

– method used to determine which queue a process will
enter when that process needs service

Operating System

Concepts

Department of ISE BMS Institute of Technology & Mgmt

Multilevel Feedback Queues

Operating System

Concepts

Department of ISE BMS Institute of Technology & Mgmt

Example of Multilevel Feedback Queue

• Three queues:
– Q0 – time quantum 8 milliseconds
– Q1 – time quantum 16 milliseconds
– Q2 – FCFS

• Scheduling
– A new job enters queue Q0 which is served FCFS.

When it gains CPU, job receives 8 milliseconds. If it
does not finish in 8 milliseconds, job is moved to
queue Q1.

– At Q1 job is again served FCFS and receives 16
additional milliseconds. If it still does not complete, it
is preempted and moved to queue Q2.

Operating System

Concepts

Department of ISE BMS Institute of Technology & Mgmt

Multiple-Processor Scheduling

• CPU scheduling more complex when multiple
CPUs are available.

• Homogeneous processors within a
multiprocessor.

• Load sharing

• Asymmetric multiprocessing – only one
processor accesses the system data structures,
alleviating the need for data sharing.

Operating System

Concepts

Department of ISE BMS Institute of Technology & Mgmt

Real-Time Scheduling

• Hard real-time systems – required to complete
a critical task within a guaranteed amount of
time.

• Soft real-time computing – requires that
critical processes receive priority over less
fortunate ones.

Operating System

Concepts

Department of ISE BMS Institute of Technology & Mgmt

Dispatch Latency

Operating System

Concepts

Department of ISE BMS Institute of Technology & Mgmt

Algorithm Evaluation

• Deterministic modeling – takes a particular
predetermined workload and defines the
performance of each algorithm for that
workload.

• Queuing models

• Implementation

Operating System

Concepts

Department of ISE BMS Institute of Technology & Mgmt

Evaluation of CPU Schedulers by
Simulation

Operating System

Concepts

Chapter 6: Process
Synchronization

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Module 6: Process
Synchronization

• Background
• The Critical-Section Problem
• Peterson’s Solution
• Synchronization Hardware
• Semaphores
• Classic Problems of

Synchronization
• Monitors
• Synchronization Examples
• Atomic Transactions

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Objectives
• To introduce the critical-section problem,

whose solutions can be used to ensure the
consistency of shared data

• To present both software and hardware
solutions of the critical-section problem

• To introduce the concept of an atomic
transaction and describe mechanisms to
ensure atomicity

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Background

• Concurrent access to shared data may result in data
inconsistency

• Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes

• Suppose that we wanted to provide a solution to the
consumer-producer problem that fills all the buffers. We
can do so by having an integer count that keeps track of
the number of full buffers. Initially, count is set to 0. It is
incremented by the producer after it produces a new
buffer and is decremented by the consumer after it
consumes a buffer.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Producer

while (true) {

 /* produce an item and put in nextProduced
*/

 while (count == BUFFER_SIZE)

 ; // do nothing

 buffer [in] = nextProduced;

 in = (in + 1) % BUFFER_SIZE;

 count++;

}

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Consumer

 while (true) {

 while (count == 0)

 ; // do nothing

 nextConsumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 count--;

 /* consume the item in
nextConsumed

 }

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Race Condition
• count++ could be implemented as

 register1 = count
 register1 = register1 + 1
 count = register1

• count-- could be implemented as
 register2 = count
 register2 = register2 - 1
 count = register2

• Consider this execution interleaving with “count = 5” initially:

 S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = count {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 = 4}
S4: producer execute count = register1 {count = 6 }
S5: consumer execute count = register2 {count = 4}

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Solution to Critical-Section
Problem

Requirements:

1. Mutual Exclusion - If process Pi is executing in its critical section, then
no other processes can be executing in their critical sections.

2. Progress - If no process is executing in its critical section and there
exist some processes that wish to enter their critical section, then
the selection of the processes that will enter the critical section next
cannot be postponed indefinitely.

3. Bounded Waiting - A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before
that request is granted.

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the N processes

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Peterson’s Solution

• Two process solution

• Assume that the LOAD and STORE instructions
are atomic; that is, cannot be interrupted.

• The two processes share two variables:

– int turn;

– Boolean flag[2]

• The variable turn indicates whose turn it is to
enter the critical section.

• The flag array is used to indicate if a process is
ready to enter the critical section. flag[i] = true
implies that process Pi is ready!

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Algorithm for Process Pi

 do {

 flag[i] = TRUE;

 turn = j;

 while (flag[j] && turn == j);

 critical section

 flag[i] = FALSE;

 remainder section

 } while (TRUE);

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Synchronization Hardware

• Many systems provide hardware support for critical
section code

• Uniprocessors – could disable interrupts

– Currently running code would execute without
preemption

– Generally too inefficient on multiprocessor systems

• Operating systems using this not broadly scalable

• Modern machines provide special atomic hardware
instructions

• Atomic = non-interruptible

– Either test memory word and set value

– Or swap contents of two memory words

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Solution to Critical-section
Problem Using Locks

 do {

 acquire lock

 critical section

 release lock

 remainder section

 } while (TRUE);

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

TestAndSet Instruction

• Definition:

 boolean TestAndSet (boolean *target)

 {

 boolean rv = *target;

 *target = TRUE;

 return rv;

 }

Must be executed atomically

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Solution using TestAndSet
• Shared Boolean variable lock, initialized to false.

• Solution:

 do {

 while (TestAndSet (&lock))

 ; // do nothing

 // critical section

 lock = FALSE;

 // remainder section

 } while (TRUE);

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Swap Instruction

• Definition:

 void Swap (boolean *a, boolean *b)

 {

 boolean temp = *a;

 *a = *b;

 *b = temp:

 }

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Solution using Swap

• Shared Boolean variable lock initialized to FALSE; Each
process has a local Boolean variable key

• Solution:

 do {

 key = TRUE;

 while (key == TRUE)

 Swap (&lock, &key);

 // critical section

 lock = FALSE;

 // remainder section

 } while (TRUE);

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Bounded-waiting Mutual Exclusion
with TestandSet()

 do {

 waiting[i] = TRUE;

 key = TRUE;

 while (waiting[i] && key)

 key = TestAndSet(&lock);

 waiting[i] = FALSE;

 // critical section

 j = (i + 1) % n;

 while ((j != i) && !waiting[j])

 j = (j + 1) % n;

 if (j == i)

 lock = FALSE;

 else

 waiting[j] = FALSE;

 // remainder section

 } while (TRUE);

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Semaphore
• Synchronization tool that does not require busy waiting

• Semaphore S – integer variable

• Two standard operations modify S: wait() and signal()

– Originally called P() and V()

• Less complicated

• Can only be accessed via two indivisible (atomic) operations

– wait (S) {

 while S <= 0

 ; // no-op

 S--;

 }

– signal (S) {

 S++;

 }

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Semaphore as
General Synchronization Tool

• Counting semaphore – integer value can range over an unrestricted
domain

• Binary semaphore – integer value can range only between 0
and 1; can be simpler to implement

– Also known as mutex locks

• Can implement a counting semaphore S as a binary semaphore

• Provides mutual exclusion

Semaphore mutex; // initialized to 1

do {

 wait (mutex);

 // Critical Section

 signal (mutex);

 // remainder section

} while (TRUE);

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Semaphore Implementation
• Must guarantee that no two processes can execute wait ()

and signal () on the same semaphore at the same time

• Thus, implementation becomes the critical section
problem where the wait and signal code are placed in the
critical section.

– Could now have busy waiting in critical section
implementation

• But implementation code is short

• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in critical
sections and therefore this is not a good solution.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Semaphore Implementation
with no Busy waiting

• With each semaphore there is an associated
waiting queue. Each entry in a waiting queue has
two data items:

– value (of type integer)

– pointer to next record in the list

• Two operations:

– block – place the process invoking the
operation on the appropriate waiting queue.

– wakeup – remove one of processes in the
waiting queue and place it in the ready queue.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Semaphore Implementation with
no Busy waiting (Cont.)

• Implementation of wait:
 wait(semaphore *S) {
 S->value--;
 if (S->value < 0) {
 add this process to S->list;
 block();
 }
 }

• Implementation of signal:

 signal(semaphore *S) {

 S->value++;
 if (S->value <= 0) {
 remove a process P from S->list;
 wakeup(P);
 }
 }

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Deadlock and Starvation
• Deadlock – two or more processes are waiting indefinitely for an

event that can be caused by only one of the waiting processes

• Let S and Q be two semaphores initialized to 1

 P0 P1

 wait (S); wait (Q);

 wait (Q); wait (S);

 . .

 . .

 . .

 signal (S); signal (Q);

 signal (Q); signal (S);

• Starvation – indefinite blocking. A process may never be removed from the
semaphore queue in which it is suspended

• Priority Inversion – Scheduling problem when lower-priority process holds a
lock needed by higher-priority process

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Classical Problems of
Synchronization

• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Bounded-Buffer Problem

• N buffers, each can hold one item

• Semaphore mutex initialized to the value 1

• Semaphore full initialized to the value 0

• Semaphore empty initialized to the value N.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Bounded Buffer Problem (Cont.)

• The structure of the producer process

 do {

 // produce an item in nextp

 wait (empty);

 wait (mutex);

 // add the item to the buffer

 signal (mutex);

 signal (full);

 } while (TRUE);

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Bounded Buffer Problem
(Cont.)

• The structure of the consumer process

 do {

 wait (full);

 wait (mutex);

 // remove an item from buffer to nextc

 signal (mutex);

 signal (empty);

 // consume the item in nextc

 } while (TRUE);

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Readers-Writers Problem

• A data set is shared among a number of concurrent processes.

– Readers – only read the data set; they do not perform any
updates

– Writers – can both read and write

• Problem – allow multiple readers to read at the same time. Only one
single writer can access the shared data at the same time.

• Shared Data

– Data set

– Semaphore mutex initialized to 1 (controls access to readcount)

– Semaphore wrt initialized to 1 (writer access)

– Integer readcount initialized to 0 (how many processes are
reading object)

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Readers-Writers Problem (Cont.)

• The structure of a writer process

 do {

 wait (wrt) ;

 // writing is performed

 signal (wrt) ;

 } while (TRUE);

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Readers-Writers Problem (Cont.)

• The structure of a reader process
 do {
 wait (mutex) ;
 readcount ++ ;
 if (readcount == 1)
 wait (wrt) ;
 signal (mutex)
 // reading is performed
 wait (mutex) ;
 readcount - - ;
 if (readcount == 0)
 signal (wrt) ;
 signal (mutex) ;
 } while (TRUE);

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Dining-Philosophers Problem

• Shared data

– Bowl of rice (data set)
– Semaphore chopstick [5] initialized to 1

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Dining-Philosophers Problem
(Cont.)

• The structure of Philosopher i:

do {

 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);

 signal (chopstick[(i + 1) % 5]);

 // think

} while (TRUE);

What is the problem with the above?

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

More Problems with
Semaphores

• Relies too much on programmers not
making mistakes (accidental or deliberate)

• Incorrect use of semaphore operations:

– signal (mutex) …. wait (mutex)

– wait (mutex) … wait (mutex)

– Omitting of wait (mutex) or signal
(mutex) (or both)

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Monitors
• A high-level abstraction that provides a convenient and effective

mechanism for process synchronization

• Only one process may be active within the monitor at a time
monitor monitor-name
{
 // shared variable declarations
 procedure P1 (…) { …. }
 …
 procedure Pn (…) {……}
 Initialization code (….) { … }
 …
 }
}

BMS Institute of Technology & Mgmt Department of ISE

Schematic view of a Monitor

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Condition Variables

• condition x, y;

• Two operations on a condition variable:

– x.wait () – a process that invokes the operation is

 suspended.

– x.signal () – resumes one of processes (if any) that

 invoked x.wait ()

BMS Institute of Technology & Mgmt Department of ISE

 Monitor with Condition
Variables

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Solution to Dining Philosophers

monitor DP
 {
 enum { THINKING; HUNGRY, EATING} state [5] ;
 condition self [5];

 void pickup (int i) {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING) self [i].wait;
 }

 void putdown (int i) {

 state[i] = THINKING;
 // test left and right neighbors
 test((i + 4) % 5);
 test((i + 1) % 5);
 }

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Solution to Dining Philosophers
(Cont.)

 void test (int i) {
 if ((state[(i + 4) % 5] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING)) {
 state[i] = EATING ;
 self[i].signal () ;
 }
 }

 initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
 }
}

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

• Each philosopher I invokes the operations pickup()
 and putdown() in the following sequence:

 DiningPhilosophters.pickup (i);

 EAT

 DiningPhilosophers.putdown (i);

Solution to Dining Philosophers (Cont.)

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Monitor Implementation Using Semaphores

• Variables
 semaphore mutex; // (initially = 1)
 semaphore next; // (initially = 0)
 int next-count = 0;

• Each procedure F will be replaced by

 wait(mutex);
 …
 body of F;

 …
 if (next_count > 0)
 signal(next)
 else
 signal(mutex);

• Mutual exclusion within a monitor is ensured.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Monitor Implementation

• For each condition variable x, we have:

 semaphore x_sem; // (initially = 0)

 int x-count = 0;

• The operation x.wait can be implemented as:

 x-count++;

 if (next_count > 0)

 signal(next);

 else

 signal(mutex);

 wait(x_sem);

 x-count--;

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Monitor Implementation

• The operation x.signal can be implemented as:

 if (x-count > 0) {

 next_count++;

 signal(x_sem);

 wait(next);

 next_count--;

 }

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

A Monitor to Allocate Single
Resource

monitor ResourceAllocator

{

 boolean busy;

 condition x;

 void acquire(int time) {

 if (busy)

 x.wait(time);

 busy = TRUE;

 }

 void release() {

 busy = FALSE;

 x.signal();

 }

initialization code() {

 busy = FALSE;

 }

}

Chapter 7: Deadlocks

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Chapter 7: Deadlocks

• The Deadlock Problem

• System Model

• Deadlock Characterization

• Methods for Handling Deadlocks

• Deadlock Prevention

• Deadlock Avoidance

• Deadlock Detection

• Recovery from Deadlock

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Chapter Objectives
• To develop a description of deadlocks,

which prevent sets of concurrent
processes from completing their tasks

• To present a number of different methods
for preventing or avoiding deadlocks in a
computer system

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

The Deadlock Problem

• A set of blocked processes each holding a resource and
waiting to acquire a resource held by another process in
the set

• Example

– System has 2 disk drives

– P1 and P2 each hold one disk drive and each needs
another one

• Example

– semaphores A and B, initialized to 1 P0 P1

 wait (A); wait(B) wait (B);
 wait(A)

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Bridge Crossing Example

• Traffic only in one direction

• Each section of a bridge can be viewed as a resource

• If a deadlock occurs, it can be resolved if one car
backs up (preempt resources and rollback)

• Several cars may have to be backed up if a deadlock
occurs

• Starvation is possible

• Note – Most OSes do not prevent or deal with
deadlocks

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

System Model

• Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

• Each resource type Ri has Wi instances.

• Each process utilizes a resource as
follows:

– request  request the resource, if not
granted immediately requesting process
enter the waiting queue

– use  operate on the resource

– release

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Deadlock Characterization
7.1 Necessary conditions

7.2 Resource Allocation Graph

7.3 Methods for handling Deadlocks

7.4 Deadlock prevention

Mutual Exclusion, Hold and wait, No preemption, Circular wait

7.5 Deadlock Avoidance

Safe state

Resource allocation graph algorithm

Bankers Algorithm

7.6 Deadlock Detection

Single instances of each resource type

Several instances of a resource type

7.7 Recovery from Deadlock

Process Termination

Resource Pre emption

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

7.1 Necessary Conditions

• Mutual exclusion: only one process at a time can use a resource (non
sharable mode)

• Hold and wait: a process holding at least one resource is waiting to
acquire additional resources held by other processes

• No preemption: a resource can be released only voluntarily by the process
holding it, after that process has completed its task

• Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes such
that P0 is waiting for a resource that is held by P1, P1 is waiting for a
resource that is held by P2, …, Pn–1 is waiting for a resource that is held by
Pn, and Pn is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

7.2 Resource-Allocation Graph

• V is partitioned into two types:

– P = {P1, P2, …, Pn}, the set consisting of all the
processes in the system

– R = {R1, R2, …, Rm}, the set consisting of all
resource types in the system

• request edge – directed edge Pi  Rj

• assignment edge – directed edge Rj  Pi

A set of vertices V and a set of edges E.(directed graph)

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Resource-Allocation Graph
(Cont.)

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj

Pi

Rj

Pi

Rj

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Example of a Resource Allocation Graph

BMS Institute of Technology & Mgmt Department of ISE

Resource Allocation Graph With A Deadlock

BMS Institute of Technology & Mgmt Department of ISE

Graph With A Cycle But No
Deadlock

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Basic Facts

• If graph contains no cycles  no deadlock

• If graph contains a cycle 

– if only one instance per resource type, then
deadlock

– if several instances per resource type,
possibility of deadlock

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

7.3 Methods for Handling
Deadlocks

1. Ensure that the system will never enter a deadlock state

 (Deadlock Prevention or avoidance)

– Prevention provides set of methods for ensuring that
atleast one of the necessary conditions cannot hold

– Avoidance by giving advance additional information about
resources and process.

2. Allow the system to enter a deadlock state and then recover
(Deadlock detection and Recovery)

3. Ignore the problem and pretend that deadlocks never occur in
the system; used by most operating systems, including UNIX

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Deadlock Prevention

• Mutual Exclusion – not required for sharable resources;
must hold for nonsharable resources.

• Hold and Wait – must guarantee that whenever a process
requests a resource, it does not hold any other resources

– Require process to request and be allocated all its
resources before it begins execution,

– or allow process to request resources only when the
process has none

DISADVANTAGES

– Low resource utilization;

– starvation possible

Restrain the ways request can be made

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Deadlock Prevention (Cont.)
• No Preemption –

– If a process that is holding some resources requests
another resource that cannot be immediately
allocated to it, then all resources currently being held
are released

– Preempted resources are added to the list of
resources for which the process is waiting

– Process will be restarted only when it can regain its
old resources, as well as the new ones that it is
requesting.

• Circular Wait – impose a total ordering of all resource
types, and require that each process requests resources
in an increasing order of enumeration

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Deadlock Avoidance

• Simplest and most useful model requires that each
process declare the maximum number of resources of
each type that it may need.

• The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure that
there can never be a circular-wait condition.

• Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes

Requires that the system has some additional a priori information

available

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Safe State

• When a process requests an available
resource, system must decide if immediate
allocation leaves the system in a safe state.

• System is in safe state if there exists a
sequence <P1, P2, …, Pn> of ALL the
processes in the systems such that for
each Pi, the resources that Pi can still
request can be satisfied by currently
available resources + resources held by all
the Pj, with j < I

• That is:

– If Pi resource needs are not immediately
available, then Pi can wait until all Pj have
finished

– When Pj is finished, Pi can obtain needed
resources, execute, return allocated resources,
and terminate

– When Pi terminates, Pi +1 can obtain its needed
resources, and so on

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Basic Facts

• If a system is in safe state  no deadlocks

• If a system is in unsafe state  possibility
of deadlock

• Avoidance  ensure that a system will
never enter an unsafe state.

BMS Institute of Technology & Mgmt Department of ISE

Safe, Unsafe, Deadlock State

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Avoidance algorithms

• Single instance of a resource type

– Use a resource-allocation graph

• Multiple instances of a resource type

– Use the banker’s algorithm

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Resource-Allocation Graph
Scheme

• Claim edge Pi --> Rj indicated that process Pj
may request resource Rj; represented by a
dashed line.

• Claim edge converts to request edge when a
process requests a resource.(Pi  Rj)

• Request edge converted to an assignment edge
when the resource is allocated to the process.
(Rj Pi)

• When a resource is released by a process,
assignment edge reconverts to a claim edge.

• Resources must be claimed a priori in the
system

BMS Institute of Technology & Mgmt Department of ISE

Resource-Allocation Graph

Resource-Allocation Graph Unsafe State

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Resource-Allocation Graph
Algorithm

• Suppose that process Pi requests a
resource Rj

• The request can be granted only if
converting the request edge to an
assignment edge does not result in the
formation of a cycle in the resource
allocation graph

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Banker’s Algorithm

• Multiple instances.

• Each process must a priori claim
maximum use.

• When a process requests a resource it
may have to wait .

• When a process gets all its resources it
must return them in a finite amount of
time

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Data Structures for the Banker’s Algorithm

• Available: Vector of length m. If available [j] = k, there
are k instances of resource type Rj available

• Max: n x m matrix. If Max [i,j] = k, then process Pi may
request at most k instances of resource type Rj

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi is
currently allocated k instances of Rj

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Safety Algorithm
1. Let Work and Finish be vectors of length m and n, respectively.

Initialize:

Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:

(a) Finish [i] = false

(b) Needi  Work

If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Resource-Request Algorithm for Process Pi

 Request = request vector for process Pi. If Requesti [j] = k
then process Pi wants k instances of resource type Rj

1. If Requesti  Needi go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum
claim

2. If Requesti  Available, go to step 3. Otherwise Pi
must wait, since resources are not available

3. Pretend to allocate requested resources to Pi by
modifying the state as follows:

 Available = Available – Request;

 Allocationi = Allocationi + Requesti;

 Needi = Needi – Requesti;

 If safe  the resources are allocated to Pi

 If unsafe  Pi must wait, and the old resource-
allocation state is restored

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Example of Banker’s Algorithm
• 5 processes P0 through P4;

 3 resource types:

 A (10 instances), B (5instances), and C (7 instances)

 Snapshot at time T0:

 Allocation Max Available

 A B C A B C A B C

 P0 0 1 0 7 5 3 3 3 2

 P1 2 0 0 3 2 2

 P2 3 0 2 9 0 2

 P3 2 1 1 2 2 2

 P4 0 0 2 4 3 3

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Example (Cont.)
• The content of the matrix Need is defined to be

 Max – Allocation

 Need

 A B C

 P0 7 4 3

 P1 1 2 2

 P2 6 0 0

 P3 0 1 1

 P4 4 3 1

The system is in a safe state since the sequence < P1, P3,
P4, P2, P0> satisfies safety criteria

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Deadlock Detection

• Allow system to enter deadlock state

• Detection algorithm

• Recovery scheme

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Single Instance of Each Resource
Type

• Maintain wait-for graph

– Nodes are processes

– Pi  Pj if Pi is waiting for Pj

• Periodically invoke an algorithm that searches for a cycle
in the graph. If there is a cycle, there exists a deadlock

• An algorithm to detect a cycle in a graph requires an
order of n2 operations, where n is the number of vertices
in the graph

BMS Institute of Technology & Mgmt Department of ISE

Resource-Allocation Graph and
Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Several Instances of a Resource
Type

• Available: A vector of length m indicates the
number of available resources of each type.

• Allocation: An n x m matrix defines the number
of resources of each type currently allocated to
each process.

• Request: An n x m matrix indicates the current
request of each process. If Request [i][j] = k,
then process Pi is requesting k more instances of
resource type.Rj.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Detection Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi  0, then
Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti  Work

If no such i exists, go to step 4

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Detection Algorithm (Cont.)

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1  i  n, then
the system is in deadlock state. Moreover, if
Finish[i] == false, then Pi is deadlocked

Algorithm requires an order of O(m x n2) operations to detect

whether the system is in deadlocked state

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Example of Detection Algorithm

• Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances)

• Snapshot at time T0:

 Allocation Request Available

 A B C A B C A B C

 P0 0 1 0 0 0 0 0 0 0

 P1 2 0 0 2 0 2

 P2 3 0 3 0 0 0

 P3 2 1 1 1 0 0

 P4 0 0 2 0 0 2

• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Example (Cont.)
• P2 requests an additional instance of type C

 Request

 A B C

 P0 0 0 0

 P1 2 0 2

 P2 0 0 1

 P3 1 0 0

 P4 0 0 2

• State of system?

– Can reclaim resources held by process P0, but insufficient
resources to fulfill other processes; requests

– Deadlock exists, consisting of processes P1, P2, P3, and P4

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Detection-Algorithm Usage

• When, and how often, to invoke depends on:

– How often a deadlock is likely to occur?

– How many processes will need to be rolled
back?

• one for each disjoint cycle

• If detection algorithm is invoked arbitrarily, there
may be many cycles in the resource graph and so
we would not be able to tell which of the many
deadlocked processes “caused” the deadlock.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Recovery from Deadlock:
Process Termination

• Abort all deadlocked processes

• Abort one process at a time until the deadlock cycle is
eliminated

• In which order should we choose to abort?

– Priority of the process

– How long process has computed, and how much
longer to completion

– Resources the process has used

– Resources process needs to complete

– How many processes will need to be terminated

– Is process interactive or batch?

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Recovery from Deadlock:
Resource Preemption

• Selecting a victim – minimize cost

• Rollback – return to some safe state,
restart process for that state

• Starvation – same process may always
be picked as victim, include number of
rollback in cost factor

End of Chapter 7

Chapter 8: Main Memory

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Chapter 8: Memory Management

• Background

• Swapping

• Contiguous Memory Allocation

• Paging

• Structure of the Page Table

• Segmentation

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Background
• Memory consists of a large array of words or bytes each with its own address

• Program must be brought (from disk) into memory and placed within a process for it to
be run

• Main memory and registers are only storage CPU can access directly

• Memory unit only sees a stream of addresses + read requests, or address + data and
write requests

• Register access in one CPU clock (or less)

• Main memory can take many cycles, causing a stall

• Cache sits between main memory and CPU registers

• Protection of memory required to ensure correct operation

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Base and Limit Registers

• Base register holds the smallest legal physical address

• Limit register specifies the size of the range

• A pair of base and limit registers define the logical address space

• CPU must check every memory access generated in user mode to be
sure it is between base and limit for that user, if not trap occurs (fatal
error)

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Hardware Address Protection with Base and Limit Registers

• Base and limit registers can be loaded by the OS

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Address Binding

• Programs on disk, ready to be brought into memory to execute form an input
queue

– Without support, must be loaded into address 00000

• Further, addresses represented in different ways at different stages of a
program’s life

– Source code addresses usually symbolic

– Compiled code addresses bind to relocatable addresses

• i.e. “14 bytes from beginning of this module”

– Linker or loader will bind relocatable addresses to absolute addresses

• i.e. 74014

– Each binding maps one address space to another

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Binding of Instructions and Data to Memory

• Address binding of instructions and data to memory addresses can
happen at three different stages

– Compile time: If memory location known a priori, absolute code
can be generated; must recompile code if starting location changes

– Load time: Must generate relocatable code if memory location is
not known at compile time. If starting address changes we need
only reload the user code.

– Execution time: Binding delayed until run time if the process can be
moved during its execution from one memory segment to another

• Need hardware support for address maps (e.g., base and limit
registers)

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Multistep Processing of a User
Program

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Logical vs. Physical Address Space
• The concept of a logical address space that is bound to a separate physical

address space is central to proper memory management

– Logical address – generated by the CPU; also referred to as virtual
address

– Physical address – address seen by the memory unit

• Logical and physical addresses are the same in compile-time and load-time
address-binding schemes; logical (virtual) and physical addresses differ in
execution-time address-binding scheme

• Logical address space is the set of all logical addresses generated by a
program

• Physical address space is the set of all physical addresses generated by a
program

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Continue.. (MMU)

• Hardware device that at run time maps virtual to physical address

• Many methods possible, covered in the rest of this chapter
To start, consider simple scheme where the value in the relocation register
is added to every address generated by a user process at the time it is sent
to memory

– Base register now called relocation register

– MS-DOS on Intel 80x86 used 4 relocation registers

• The user program deals with logical addresses; it never sees the real
physical addresses

– Execution-time binding occurs when reference is made to location in
memory

– Logical address bound to physical addresses

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Dynamic relocation using a relocation register

n Routine is not loaded until it is called

n Advantages

n Better memory-space utilization; unused

routine is never loaded

n All routines kept on disk in relocatable

load format

n Useful when large amounts of code are

needed to handle infrequently occurring

cases

n No special support from the operating

system is required

l Implemented through program design

l OS can help by providing libraries to

implement dynamic loading

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Dynamic Linking
• Static linking – system libraries and program code combined by the loader

into the binary program image

• Dynamic linking –linking postponed until execution time

• Small piece of code, stub, used to locate the appropriate memory-resident
library routine

• Stub replaces itself with the address of the routine, and executes the
routine

• Operating system checks if routine is in processes’ memory address

– If not in address space, add to address space

• Dynamic linking is particularly useful for libraries

• System also known as shared libraries

• Consider applicability to patching system libraries

– Versioning may be needed

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Swapping
• A process can be swapped temporarily out of memory to a backing store, and then

brought back into memory for continued execution
– Total physical memory space of processes can exceed physical memory

• Backing store – fast disk large enough to accommodate copies of all memory images for
all users; must provide direct access to these memory images

• Roll out, roll in – swapping variant used for priority-based scheduling algorithms; lower-
priority process is swapped out so higher-priority process can be loaded and executed

• Major part of swap time is transfer time; total transfer time is directly proportional to
the amount of memory swapped

• System maintains a ready queue of ready-to-run processes which have memory images
on disk

• Does the swapped out process need to swap back in to same physical addresses?
• Depends on address binding method

– Plus consider pending I/O to / from process memory space
• Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and

Windows)

– Swapping normally disabled

– Started if more than threshold amount of memory allocated

– Disabled again once memory demand reduced below threshold

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Schematic View of Swapping

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Context Switch Time including Swapping

 If next processes to be put on CPU is not in memory, need to swap out a process and swap in target
process

 Context switch time can then be very high

 Assume 100MB process . hard disk transfer rate = 50MB/sec

 Swap out time = (100 MB/50 MB/sec) 2sec 2000ms

 Total context switch =swapping in + swap out

 2000ms + 2000ms=4000ms (4 seconds)

 Can reduce if reduce size of memory swapped – by knowing how much memory really being used

 System calls to inform OS of memory use via request_memory() and
release_memory()

 Other constraints as well on swapping

 Pending I/O – can’t swap out as I/O would occur to wrong process

 Or always transfer I/O to kernel space, then to I/O device

• Known as double buffering, adds overhead

 Standard swapping not used in modern operating systems

• Swap only when free memory extremely low

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Contiguous Allocation
• Main memory must support both OS and user processes

• Limited resource, must allocate efficiently

• Contiguous allocation is one early method

• Main memory usually into two partitions:

– Resident operating system, usually held in low memory with interrupt vector

– User processes then held in high memory

– Each process contained in single contiguous section of memory

• Relocation registers used to protect user processes from each other, and from changing
operating-system code and data

– Base register contains value of smallest physical address

– Limit register contains range of logical addresses – each logical address must be less
than the limit register

– MMU maps logical address dynamically

– Can then allow actions such as kernel code being transient and kernel changing size

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Hardware Support for Relocation
and Limit Registers

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Contiguous Allocation (Cont.)
• Multiple-partition allocation

– Degree of multiprogramming limited by number of partitions

– Variable-partition sizes for efficiency (sized to a given process’ needs)

– Hole – block of available memory; holes of various size are scattered throughout memory

– When a process arrives, it is allocated memory from a hole large enough to accommodate
it

– Process exiting frees its partition, adjacent free partitions combined

– Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Dynamic Storage-Allocation
Problem

• First-fit: Allocate the first hole that is big enough

• Best-fit: Allocate the smallest hole that is big enough; must
search entire list, unless ordered by size

– Produces the smallest leftover hole

• Worst-fit: Allocate the largest hole; must also search entire list

– Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of speed and storage utilization

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

• Given five memory partitions of 100Kb, 500Kb, 200Kb,
300Kb, 600Kb (in order), how would the first-fit, best-
fit, and worst-fit algorithms place processes of 212 Kb,
417 Kb, 112 Kb, and 426 Kb (in order)? Which
algorithm makes the most efficient use of memory?

First-fit:

• 212K is put in 500K partition (left over 500k-212= 288k)

• 417K is put in 600K partition

• 112K is put in 288K partition (left over 288K - 212K=76K)

• 426K must wait

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

First Fit

• memory partitions of 100Kb, 500Kb, 200Kb, 300Kb, 600Kb (in order)

• processes of 212 Kb, 417 Kb, 112 Kb, and 426 Kb (in order)

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Best fit
• memory partitions of 100Kb, 500Kb, 200Kb, 300Kb, 600Kb (in order)

• processes of 212 Kb, 417 Kb, 112 Kb, and 426 Kb (in order)

• 212K is put in 300K partition

• 417K is put in 500K partition

• 112K is put in 200K partition

• 426K is put in 600K partition

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Worst Fit
• memory partitions of 100Kb, 500Kb, 200Kb, 300Kb, 600Kb (in order)

• processes of 212 Kb, 417 Kb, 112 Kb, and 426 Kb (in order)

• 212K is put in 600K partition (LEFT OVER 600K-212K=388K)

• 417K is put in 500K partition (LEFT OVER 500K-4172K=83K)

• 112K is put in 388K partition (LEFT OVER 500K-4172K=83K)

• 426K must wait

 In this example, best-fit turns out to be the best.

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Fragmentation
• External Fragmentation – total memory space exists

to satisfy a request, but it is not contiguous

• Internal Fragmentation – allocated memory may be
slightly larger than requested memory; this size
difference is memory internal to a partition, but not
being used

• First fit analysis reveals that given N blocks allocated,
0.5 N blocks lost to fragmentation

– 1/3 may be unusable -> 50-percent rule

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Fragmentation (Cont.)

Reduce external fragmentation by compaction

Shuffle memory contents to place all free memory
together in one large block

Compaction is possible only if relocation is dynamic,
and is done at execution time

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Paging
 Is a memory management Scheme that permits Physical address space of

a process can be noncontiguous; process is allocated physical memory
whenever the latter is available

 Avoids external fragmentation

 Avoids problem of varying sized memory chunks

Basic Method

 Divide physical memory into fixed-sized blocks called frames

 Divide logical memory into blocks of same size called pages

 Size is power of 2, between 512 bytes and 16 Mbytes

 To run a program of size N pages, need to find N free frames and load
program

 Set up a page table to translate logical to physical addresses

 Backing store likewise split into pages

 Still have Internal fragmentation

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Address Translation Scheme

• Address generated by CPU is divided into:

– Page number (p) – used as an index into a page table which contains
base address of each page in physical memory

– Page offset (d) – combined with base address to define the physical
memory address that is sent to the memory unit

– For given logical address space 2m and page size 2n

page number page offset

p d

m - n n

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Paging Hardware

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Paging Model of Logical and Physical Memory

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Paging Example

n=2 and m=4 32-byte memory and 4-byte pages

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Paging (Cont.)
 Calculating internal fragmentation

 Page size = 2,048 bytes

 Process size = 72,766 bytes

 35 pages + 1,086 bytes

 Internal fragmentation of 2,048 - 1,086 = 962 bytes

 Worst case fragmentation = 1 frame – 1 byte

 On average fragmentation = 1 / 2 frame size

 So small frame sizes desirable?

 But each page table entry takes memory to track

 Page sizes growing over time

• Solaris supports two page sizes – 8 KB and 4 MB

 Process view and physical memory now very different

Advantage

 Clear separation between the user’s view of memory and the actual physical memory

 Process can only access its own memory

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Free Frames

Before allocation After allocation

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Implementation of Page Table
• Page table is kept in main memory

• Page-table base register (PTBR) points to the page table

• Page-table length register (PTLR) indicates size of the page table

• In this scheme every data/instruction access requires two memory accesses

– One for the page table and one for the data / instruction

• The two memory access problem can be solved by the use of a special fast-lookup
hardware cache called associative memory or translation look-aside buffers
(TLBs)

• Some TLBs store address-space identifiers (ASIDs) in each TLB entry – uniquely
identifies each process to provide address-space protection for that process

– Otherwise need to flush at every context switch

• TLBs typically small (64 to 1,024 entries)

• On a TLB miss, value is loaded into the TLB for faster access next time

– Replacement policies must be considered

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Associative Memory
• Associative memory – parallel search

• Address translation (p, d)

– If p is in associative register, get frame # out

– Otherwise get frame # from page table in memory

Page # Frame #

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Paging Hardware With TLB

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Effective Access Time
• Associative Lookup =  time unit

– Can be < 10% of memory access time

• Hit ratio = 

– Hit ratio –> percentage of times that a page number is found in the
associative registers(TLB);

– TLB miss-> if page number is not found in the TLB

• Consider  = 80%,  = 20ns for TLB search, 100ns for access page table and
100 ns for accessing desired byte in physical memory

• Effective Access Time (EAT)

 EAT = 0.80 x 120 + 0.20 x 220 = 140ns

• Consider more realistic hit ratio ->  = 98%,  = 20ns for TLB search, 100ns
for memory access

– EAT = 0.98 x 120 + 0.02 x 220 = 122ns

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Memory Protection
• Memory protection implemented by associating protection bit with

each frame to indicate if read-only or read-write access is allowed

– Can also add more bits to indicate page execute-only, and so on
Valid-invalid bit attached to each entry in the page table:

– “valid” indicates that the associated page is in the process’ logical
address space, and is thus a legal page

– “invalid” indicates that the page is not in the process’ logical
address space

– Or use page-table length register (PTLR)

• Any violations result in a trap to the kernel

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Valid (v) or Invalid (i) Bit In A Page Table

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Shared Pages
• Shared code

– One copy of read-only (reentrant) code shared among processes (i.e.,
text editors, compilers, window systems)

– Similar to multiple threads sharing the same process space

– Also useful for interprocess communication if sharing of read-write
pages is allowed

• Private code and data

– Each process keeps a separate copy of the code and data

– The pages for the private code and data can appear anywhere in the
logical address space

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Shared Pages Example

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Structure of the Page Table
• Memory structures for paging can get huge using straight-forward

methods

– Consider a 32-bit logical address space as on modern computers

– Page size of 4 KB (212)

– Page table would have 1 million entries (232 / 212)

– If each entry is 4 bytes -> 4 MB of physical address space / memory
for page table alone

• That amount of memory used to cost a lot

• Don’t want to allocate that contiguously in main memory

• Hierarchical Paging

• Hashed Page Tables

• Inverted Page Tables

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Hierarchical Page Tables

• Break up the logical address space into
multiple page tables

• A simple technique is a two-level page
table

• We then page the page table

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Two-Level Page-Table Scheme

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Two-Level Paging Example

• A logical address (on 32-bit machine with 1K page size) is divided into:

– a page number consisting of 22 bits

– a page offset consisting of 10 bits

• Since the page table is paged, the page number is further divided into:

– a 12-bit page number

– a 10-bit page offset

• Thus, a logical address is as follows:

• where p1 is an index into the outer page table, and p2 is the displacement within the
page of the inner page table Known as forward-mapped page table

page number page offset

p1 p2 d

12 10 10

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Address-Translation Scheme

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

64-bit Logical Address Space

• Even two-level paging scheme not sufficient

• If page size is 4 KB (212)

– Then page table has 252 entries

– If two level scheme, inner page tables could be 210 4-byte entries

Address would look like

– Outer page table has 242 entries or 244 bytes

– One solution is to add a 2nd outer page table

– But in the following example the 2nd outer page table is still 234 bytes in size

• And possibly 4 memory access to get to one physical memory location

outer page page offset

p1 p2 d

42 10 12

inner page

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Three-level Paging Scheme

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Hashed Page Tables

• Common in address spaces > 32 bits

• The virtual page number is hashed into a page table

– This page table contains a chain of elements hashing to the same
location

• Each element contains (1) the virtual page number (2) the value of the
mapped page frame (3) a pointer to the next element

• Virtual page numbers are compared in this chain searching for a match

– If a match is found, the corresponding physical frame is extracted

• Variation for 64-bit addresses is clustered page tables

– Similar to hashed but each entry refers to several pages (such as 16)
rather than 1

– Especially useful for sparse address spaces (where memory references
are non-contiguous and scattered)

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Hashed Page Table

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Inverted Page Table
• Rather than each process having a page table and keeping track of all

possible logical pages, track all physical pages

• One entry for each real page of memory

• Entry consists of the virtual address of the page stored in that real
memory location, with information about the process that owns that
page

• Decreases memory needed to store each page table, but increases time
needed to search the table when a page reference occurs

• Use hash table to limit the search to one — or at most a few — page-
table entries

– TLB can accelerate access

• But how to implement shared memory?

– One mapping of a virtual address to the shared physical address

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Inverted Page Table Architecture

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Segmentation
• Is a memory-management scheme that

supports user view of memory

• A program is a collection of segments
– A segment is a logical unit such as:

 Code

 Global Variables

 Heap

 Stack

 Standard C library

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

User’s View of a Program

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

• Logical address consists of a two tuple:

 <segment-number, offset>,

• Segment table – maps two-dimensional physical addresses; each table
entry has:

– base – contains the starting physical address where the segments
reside in memory

– limit – specifies the length of the segment

• Segment-table base register (STBR) points to the segment table’s location
in memory

• Segment-table length register (STLR) indicates number of segments used
by a program;

 segment number s is legal if s < STLR

Segmentation Architecture

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Department of ISE

Segmentation Architecture (Cont.)
• Protection

– With each entry in segment table associate:

• validation bit = 0  illegal segment

• read/write/execute privileges

• Protection bits associated with segments; code sharing occurs at segment
level

• Since segments vary in length, memory allocation is a dynamic storage-
allocation problem

• A segmentation example is shown in the following diagram

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Segmentation Hardware

BMS Institute of Technology & Mgmt Department of ISE

Operating System Concepts – 9th Edition

Example of Segmentation

End of Chapter 8

Mod-4 : Virtual Memory

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Chapter 9: Virtual Memory

• Background

• Demand Paging

• Copy-on-Write

• Page Replacement

• Allocation of Frames

• Thrashing

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Objectives
• To describe the benefits of a virtual memory system

• To explain the concepts of demand paging, page-
replacement algorithms, and allocation of page frames

• To discuss the principle of the working-set model

• To examine the relationship between shared memory and
memory-mapped files

• To explore how kernel memory is managed

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Background
• Code needs to be in memory to execute, but entire program

rarely used

– Error code, unusual routines, large data structures

• Entire program code not needed at same time

• Consider ability to execute partially-loaded program

– Program no longer constrained by limits of physical memory

– Each program takes less memory while running -> more
programs run at the same time

• Increased CPU utilization and throughput with no
increase in response time or turnaround time

– Less I/O needed to load or swap programs into memory ->
each user program runs faster

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Background
• Virtual memory – separation of user logical memory from physical

memory

– Only part of the program needs to be in memory for execution

– Logical address space can therefore be much larger than physical
address space

– Allows address spaces to be shared by several processes

– Allows for more efficient process creation

– More programs running concurrently

– Less I/O needed to load or swap processes

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

• Virtual address space – logical view of how process is stored in memory

– Usually start at address 0, contiguous addresses until end of space

– Meanwhile, physical memory organized in page frames

– MMU must map logical to physical

• Virtual memory can be implemented via:

– Demand paging

– Demand segmentation

BMS Institute of Technology & Mgmt Department of ISE

Virtual Memory That is
Larger Than Physical Memory

BMS Institute of Technology & Mgmt Department of ISE

Virtual-address Space
 Usually design logical address space for stack to start at

Max logical address and grow “down” while heap grows

“up”

 Maximizes address space use

 Unused address space between the two is hole

 No physical memory needed until heap or

stack grows to a given new page

 Enables sparse address spaces with holes left for

growth, dynamically linked libraries, etc

 System libraries shared via mapping into virtual address

space

 Shared memory by mapping pages read-write into virtual

address space

 Pages can be shared during fork(), speeding process

creation

BMS Institute of Technology & Mgmt Department of ISE

Shared Library Using Virtual
Memory

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Demand Paging
• Could bring entire process into

memory at load time

• Or bring a page into memory only
when it is needed

– Less I/O needed, no
unnecessary I/O

– Less memory needed

– Faster response

– More users

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

• Similar to paging system with swapping (diagram on right)

• Page is needed  reference to it

– invalid reference  abort

– not-in-memory  bring to memory

• Lazy swapper – never swaps a page into memory unless page will be needed

– Swapper that deals with pages is a pager

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Basic Concepts

• With swapping, pager guesses which pages will be used before
swapping out again

• Instead, pager brings in only those pages into memory

• How to determine that set of pages?

– Need new MMU functionality to implement demand paging

• If pages needed are already memory resident

– No difference from non demand-paging

• If page needed and not memory resident

– Need to detect and load the page into memory from storage

• Without changing program behavior

• Without programmer needing to change code

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Valid-Invalid Bit
• With each page table entry a valid–invalid bit is associated

(v  in-memory – memory resident, i  not-in-memory)

• Initially valid–invalid bit is set to i on all entries

• Example of a page table snapshot:

• During MMU address translation, if valid–invalid bit in page table entry

 is i  page fault

v

v

v

v

i

i

i

….

Frame # valid-invalid bit

page table

BMS Institute of Technology & Mgmt Department of ISE

Page Table When Some Pages Are Not in Main Memory

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Page Fault
• If there is a reference to a page, first reference to that page will trap to

operating system:

 page fault

1. Operating system looks at another table to decide:

– Invalid reference  abort

– Just not in memory

2. Find free frame

3. Swap page into frame via scheduled disk operation

4. Reset tables to indicate page now in memory
Set validation bit = v

5. Restart the instruction that caused the page fault

BMS Institute of Technology & Mgmt Department of ISE

Steps in Handling a Page Fault

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Aspects of Demand Paging
• Extreme case – start process with no pages in memory

– OS sets instruction pointer to first instruction of process, non-memory-resident -> page
fault

– And for every other process pages on first access

– Pure demand paging (Never bring a page in to memory until it is required)

• Actually, a given instruction could access multiple pages -> multiple page faults

– Consider fetch and decode of instruction which adds 2 numbers from memory and stores
result back to memory

– Pain decreased because of locality of reference (same set of pages accessed over a
short period of time)

• Hardware support needed for demand paging

1. Page table with valid / invalid bit

2. Secondary memory (swap device with swap space)

– Crucial is Instruction restart (we must be able to restart the process in exactly the same
place and state, except that the desired page is now in memory and is accessible)

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Instruction Restart
• Consider an instruction that could access several different locations

– block move(256 bytes)

– auto increment/decrement location

– Restart the whole operation?

• What if source and destination overlap? We cannot restart the instruction

 2 methods
 The microcode computes and attempts to access both ends of both blocks. The move can then take

place

 The other solution uses temporary registers to hold the values of overwritten locations. If there is a
page fault, all the old values are written back into memory so that the instruction can be repeated.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Performance of Demand Paging

• Stages in Demand Paging (worse case)
1. Trap to the operating system

2. Save the user registers and process state

3. Determine that the interrupt was a page fault

4. Check that the page reference was legal and determine the location of the page on the disk

5. Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is serviced

2. Wait for the device seek and/or latency time

3. Begin the transfer of the page to a free frame

6. While waiting, allocate the CPU to some other user

7. Receive an interrupt from the disk I/O subsystem (I/O completed)

8. Save the registers and process state for the other user

9. Determine that the interrupt was from the disk

10. Correct the page table and other tables to show page is now in memory

11. Wait for the CPU to be allocated to this process again

12. Restore the user registers, process state, and new page table, and then resume the interrupted instruction

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Performance of Demand Paging
(Cont.)

• Three major activities

– Service the interrupt – careful coding means just several hundred instructions needed

– Read the page – lots of time

– Restart the process – again just a small amount of time

• Page Fault Rate 0  p  1

– if p = 0 no page faults

– if p = 1, every reference is a fault

• Effective Access Time (EAT)

 EAT = (1 – p) x memory access

 + p (page fault overhead + swap page out + swap page in)

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Demand Paging Example
• Memory access time = 200 nanoseconds

• Average page-fault service time = 8 milliseconds

• EAT = (1 – p) x 200 + p (8 milliseconds)

 = (1 – p) x 200 + p x 8,000,000

 = 200 + p x 7,999,800

• If one access out of 1,000 causes a page fault, then

 EAT = 8.2 microseconds.

 This is a slowdown by a factor of 40!!

• If want performance degradation < 10 percent

– 220 > 200 + 7,999,800 x p
20 > 7,999,800 x p

– p < .0000025

– < one page fault in every 400,000 memory accesses

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Demand Paging Optimizations
• Swap space I/O faster than file system I/O even if on the same device

– Swap allocated in larger chunks, less management needed than file system

• Copy entire process image to swap space at process load time

– Then page in and out of swap space

– Used in older BSD Unix

• Demand page in from program binary on disk, but discard rather than paging out when
freeing frame

– Used in Solaris and current BSD

– Still need to write to swap space

• Pages not associated with a file (like stack and heap) – anonymous memory

• Pages modified in memory but not yet written back to the file system

• Mobile systems

– Typically don’t support swapping

– Instead, demand page from file system and reclaim read-only pages (such as code)

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Copy-on-Write
• Copy-on-Write (COW) allows both parent and child processes to

initially share the same pages in memory
– If either process modifies a shared page, only then is the page copied

• COW allows more efficient process creation as only modified
pages are copied

• In general, free pages are allocated from a pool of zero-fill-on-
demand pages
– Pool should always have free frames for fast demand page execution

• Don’t want to have to free a frame as well as other processing on page fault

– Why zero-out a page before allocating it?

• vfork() variation on fork() system call has parent suspend
and child using copy-on-write address space of parent
– Designed to have child call exec()

– Very efficient

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Before Process 1 Modifies Page C

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

After Process 1 Modifies Page C

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

What Happens if There is no Free Frame?

• Used up by process pages

• Also in demand from the kernel, I/O buffers, etc

• How much to allocate to each?

• Page replacement – find some page in memory, but
not really in use, page it out
– Algorithm – terminate? swap out? replace the page?

– Performance – want an algorithm which will result in
minimum number of page faults

• Same page may be brought into memory several
times

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Page Replacement

• Prevent over-allocation of memory by modifying
page-fault service routine to include page
replacement.

• Use modify (dirty) bit to reduce overhead of page
transfers – only modified pages are written to disk.

• Page replacement completes separation between
logical memory and physical memory – large virtual
memory can be provided on a smaller physical
memory

BMS Institute of Technology & Mgmt Department of ISE

Need For Page Replacement

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Basic Page Replacement
1. Find the location of the desired page on disk

2. Find a free frame:
 - If there is a free frame, use it
 - If there is no free frame, use a page replacement algorithm to select a
victim frame
 - Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update the page and
frame tables

4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault – increasing EAT

BMS Institute of Technology & Mgmt Department of ISE

Page Replacement

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Page and Frame Replacement Algorithms

• Frame-allocation algorithm determines

– How many frames to give each process

– Which frames to replace

• Page-replacement algorithm

– Want lowest page-fault rate on both first access and re-access

• Evaluate algorithm by running it on a particular string of memory
references (reference string) and computing the number of page faults on
that string

– String is just page numbers, not full addresses

– Repeated access to the same page does not cause a page fault

– Results depend on number of frames available

• In all our examples, the reference string of referenced page numbers is

 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

BMS Institute of Technology & Mgmt Department of ISE

Graph of Page Faults Versus
The Number of Frames

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

First-In-First-Out (FIFO) Algorithm
• Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

• 3 frames (3 pages can be in memory at a time per process)

• Can vary by reference string: consider
1,2,3,4,1,2,5,1,2,3,4,5

– Adding more frames can cause more page
faults!

• Belady’s Anomaly

• How to track ages of pages?

– Just use a FIFO queue

15 page faults

BMS Institute of Technology & Mgmt Department of ISE

FIFO Illustrating Belady’s Anomaly

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Optimal Algorithm
• Replace page that will not be used for longest period of time

– 9 is optimal for the example

 How do you know this?

– Can’t read the future

• Used for measuring how well your algorithm performs

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Least Recently Used (LRU)
Algorithm

• Use past knowledge rather than future

• Replace page that has not been used in the most
amount of time

• Associate time of last use with each page

• Page falults=12

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

• 12 faults – better than FIFO but worse than OPT

• Generally good algorithm and frequently used

• But how to implement?

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

LRU Algorithm (Cont.)
• Counter implementation

– Every page entry has a counter; every time page is referenced through
this entry, copy the clock into the counter

– When a page needs to be changed, look at the counters to find
smallest value

• Search through table needed

• Stack implementation

– Keep a stack of page numbers in a double link form:

– Page referenced:

• move it to the top

• requires 6 pointers to be changed

– But each update more expensive

– No search for replacement

• LRU and OPT are cases of stack algorithms that don’t have Belady’s
Anomaly

BMS Institute of Technology & Mgmt Department of ISE

Use Of A Stack to Record Most Recent Page References

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

LRU Approximation Algorithms
• LRU needs special hardware and still slow

• Reference bit

– With each page associate a bit, initially = 0

– When page is referenced bit set to 1

– Replace any with reference bit = 0 (if one exists)

• We do not know the order, however

• Second-chance algorithm(dock algorithm)

– Generally FIFO, plus hardware-provided reference bit

– Clock replacement

– If page to be replaced has

• Reference bit = 0 -> replace it

• reference bit = 1 then:

– set reference bit 0, leave page in memory

– replace next page, subject to same rules

BMS Institute of Technology & Mgmt Department of ISE

Second-Chance (clock) Page-Replacement Algorithm

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Enhanced Second-Chance
Algorithm

• Improve algorithm by using reference bit and modify bit (if available) in
concert

• Take ordered pair (reference, modify)

1. (0, 0) neither recently used not modified – best page to replace

2. (0, 1) not recently used but modified – not quite as good, must write out
before replacement

3. (1, 0) recently used but clean – probably will be used again soon

4. (1, 1) recently used and modified – probably will be used again soon and need
to write out before replacement

• When page replacement called for, use the clock scheme but use the four
classes replace page in lowest non-empty class

– Might need to search circular queue several times

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Counting Algorithms
• Keep a counter of the number of references

that have been made to each page

– Not common

• Lease Frequently Used (LFU) Algorithm:
replaces page with smallest count

• Most Frequently Used (MFU) Algorithm:
based on the argument that the page with
the smallest count was probably just brought
in and has yet to be used

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Page-Buffering Algorithms
• Keep a pool of free frames, always

– Then frame available when needed, not found at fault time

– Read page into free frame and select victim to evict and add to free pool

– When convenient, evict victim

• Possibly, keep list of modified pages

– When backing store otherwise idle, write pages there and set to non-dirty

• Possibly, keep free frame contents intact and note what is in them

– If referenced again before reused, no need to load contents again from disk

– Generally useful to reduce penalty if wrong victim frame selected

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Applications and Page Replacement

• All of these algorithms have OS guessing about future page access

• Some applications have better knowledge – i.e. databases

• Memory intensive applications can cause double buffering

– OS keeps copy of page in memory as I/O buffer

– Application keeps page in memory for its own work

• Operating system can given direct access to the disk, getting out of
the way of the applications

– Raw disk mode

• Bypasses buffering, locking, etc

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Allocation of Frames

• Each process needs minimum number of frames

• Example: IBM 370 – 6 pages to handle SS MOVE instruction:

– instruction is 6 bytes, might span 2 pages

– 2 pages to handle from

– 2 pages to handle to

• Maximum of course is total frames in the system

• Two major allocation schemes

– fixed allocation

– priority allocation

• Many variations

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Fixed Allocation

• Equal allocation – For example, if there are 100 frames (after allocating
frames for the OS) and 5 processes, give each process 20 frames

– Keep some as free frame buffer pool

• Proportional allocation – Allocate according to the size of process

– Dynamic as degree of multiprogramming, process sizes change

m
S

s
pa

m

sS

ps

i
ii

i

ii









 for allocation

frames of number total

 process of size

5762
137

127

462
137

10

127

10

62

2

1

2

1











a

a

s

s

m

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Priority Allocation

• Use a proportional allocation scheme using
priorities rather than size

• If process Pi generates a page fault,

– select for replacement one of its frames

– select for replacement a frame from a process
with lower priority number

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Global vs. Local Allocation
• Global replacement – process selects a

replacement frame from the set of all frames;
one process can take a frame from another

– But then process execution time can vary greatly

– But greater throughput so more common

• Local replacement – each process selects from
only its own set of allocated frames

– More consistent per-process performance

– But possibly underutilized memory

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Non-Uniform Memory Access
• So far all memory accessed equally

• Many systems are NUMA – speed of access to memory varies

– Consider system boards containing CPUs and memory, interconnected over
a system bus

• Optimal performance comes from allocating memory “close to” the CPU on
which the thread is scheduled

– And modifying the scheduler to schedule the thread on the same system
board when possible

– Solved by Solaris by creating lgroups

• Structure to track CPU / Memory low latency groups

• Used my schedule and pager

• When possible schedule all threads of a process and allocate all memory
for that process within the lgroup

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Thrashing
• If a process does not have “enough” pages, the page-fault

rate is very high
– Page fault to get page

– Replace existing frame

– But quickly need replaced frame back

– This leads to:

• Low CPU utilization

• Operating system thinking that it needs to increase the degree of
multiprogramming

• Another process added to the system

• A process is thrashing if it is spending more time paging
than executing.

• This high paging activity is called thrashing

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Cause of Thrashing

• We can limit the effects of thrashing by using a local
replacement algorithm (or priority replacement algorithm).

• To prevent thrashing, we must provide a process with as many

frames as it needs.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Cause of Thrashing (contd)
• But how do we know how many frames it "needs'?

• The working-set strategy starts by looking at how many

frames a process is actually usingLocality model

– Process migrates from one locality to another

– A locality is a set of pages that are actively used
together

– Localities may overlap

 For example, when a function is called, it defines a
new locality mem ref for instruction, local &
global var are made

 When we exit the function, the process leaves this
locality.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Cause of thrashing(contd..)

• localities are defined by the program structure
and its data structures.

• If accesses to any types of data were random
rather than patterned, caching would be useless

• Why does thrashing occur?
  size of locality > total memory size

– Limit effects by using local or priority page
replacement

BMS Institute of Technology & Mgmt Department of ISE

Locality In A Memory-Reference Pattern

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Working-Set Model
• Working-set model is based on the assumption of

locality.

• This model uses a parameter, A, to define the working-
set window.

• The idea is to examine the most recent A page
references.

• If a page is in,active use, it will be in the working set. If it
is no longer being used, it will drop from the working set
A time units after its last reference.

• working-set strategy prevents thrashing while keeping the
degree of multiprogramming as high as possible. Thus, it
optimizes CPU utilization.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Working-Set Model
•   working-set window  a fixed number of page references

Example: 10,000 instructions

• WSSi (working set of Process Pi) =
total number of pages referenced in the most recent  (varies in time)

– if  too small will not encompass entire locality

– if  too large will encompass several localities

– if  =   will encompass entire program

• D =  WSSi  total demand frames

– Approximation of locality

• if D > m  Thrashing

• Policy if D > m, then suspend or swap out one of the processes

• If A=10 memory references

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Keeping Track of the Working Set

• The difficulty with the working-set model is keeping track of the working

• set.

• The working-set window is a moving window.

• At each memory reference, a new reference appears at one end and the
oldest reference drops off the other end.

• Approximate with interval timer + a reference bit

• Example:  = 10,000

– Timer interrupts after every 5000 time units

– Keep in memory 2 bits for each page

– Whenever a timer interrupts copy and sets the values of all reference
bits to 0

– If one of the bits in memory = 1  page in working set

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

• Why is this not completely accurate?

– because we cannot tell where, within an interval
of 5,000, a reference occurred

• Improvement = We can reduce the uncertainty
by increasing the number of history bits and
the frequency of interrupts (eg 10 bits and
interrupt every 1000 time units)

• the cost to service these more

• frequent interrupts will be correspondingly
higher.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Page-Fault Frequency (PFF)
• More direct approach than WSS

• We can establish upper and lower bounds on the
desired page-fault rate
– If actual rate falls below the lower limit, too low, process loses

frame

– If actual rate exceeds the upper limit, too high, process gains
frame

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Working Sets and Page Fault Rates
 Direct relationship between working set of a process and its page-fault rate

 Working set changes over time

 Peaks and valleys over time

 A peak in the page fault rate occurs when we begin demand paging a new
locality

 When the process moves to the new working set, the page fault rate rises
towards the peak once again.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

End of Chapter

Chapter 11:
File-System Interface

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Chapter 11: File-System Interface

• File Concept

• Access Methods

• Disk and Directory Structure

• File-System Mounting

• File Sharing

• Protection

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Objectives

• To explain the function of file systems

• To describe the interfaces to file systems

• To discuss file-system design tradeoffs,
including access methods, file sharing, file
locking, and directory structures

• To explore file-system protection

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

File Concept
• Contiguous logical address space

• Types:

– Data

• numeric

• character

• binary

– Program

• Contents defined by file’s creator

– Many types

• Consider text file, source file, executable file, object
file,numeric data, graphics, images, sound…

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

File Attributes
• Name – only information kept in human-readable form

• Identifier – unique tag (number) identifies file within file system

• Type – needed for systems that support different types

• Location – pointer to file location on device

• Size – current file size

• Protection – controls who can do reading, writing, executing

• Time, date, and user identification – data for protection,
security, and usage monitoring

• Information about files are kept in the directory structure, which
is maintained on the disk

• Many variations, including extended file attributes such as file
checksum Information kept in the directory structure

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

File Operations
• File is an abstract data type

• Create

• Write – at write pointer location

• Read – at read pointer location

• Reposition within file - seek

• Delete

• Truncate

• Open(Fi) – search the directory structure on disk for
entry Fi, and move the content of entry to memory

• Close (Fi) – move the content of entry Fi in memory to
directory structure on disk

• OS uses two levels of internal tables: a per-process table
and a system-wide table.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Open Files

• Several pieces of data are needed to manage open
files:

– Open-file table: tracks open files

– File pointer: pointer to last read/write location, per
process that has the file open

– File-open count: counter of number of times a file is
open – to allow removal of data from open-file
table when last processes closes it

– Disk location of the file: cache of data access
information

– Access rights: per-process access mode information

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Open File Locking
• Provided by some operating systems and file systems

• File "locks allow one process to lock a file and prevent
other processes from gaining access to it

– Similar to reader-writer locks

– Shared lock similar to reader lock – several processes
can acquire concurrently

– Exclusive lock similar to writer lock

• Mandatory or advisory:

– Mandatory – once a process acquires an exclusive
lock, the operating system will prevent any other
process from accessing the locked file. (eg: windows)

– Advisory – processes can find status of locks and
decide what to do(eg: Unix)

BMS Institute of Technology & Mgmt Department of ISE

File Types – Name. Extension

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

File Structure
• sequence of words, bytes

• Simple record structure

– Lines

– Fixed length

– Variable length

• Complex Structures

– Formatted document

– Relocatable load file

• Can simulate last two with first method by inserting
appropriate control characters

• Who decides:

– Operating system

– Program

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Access Methods

• Sequential Access

• Direct Access(Relative Access)

• Other Access Methods (Indexing)

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Access Methods
• Sequential Access
 read next

 write next

 reset

 no read after last write
 (rewrite)

Eg: text editors and compilers
Depicts tape model

BMS Institute of Technology & Mgmt Department of ISE

Direct (Relative) access file
Direct Access – file is fixed length logical records

 read n

 write n

 position to n

 read next

 write next

 rewrite n

 n = relative block number

• For direct access, the file is viewed as a numbered sequence of

blocks or records.
• We may read block 14, then read block 53, and then write block

7. There are no restrictions on the order of reading or writing for
a direct-access file.

• Relative block numbers allow OS to decide where file should

be placed
See allocation problem in Ch 12

• Eg: Databases
• Depicts Disk model

BMS Institute of Technology & Mgmt Department of ISE

Simulation of Sequential Access on Direct-access File

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Other Access Methods
• Can be built on top of base methods

• General involve creation of an index for the file

• Keep index in memory for fast determination of location of
data to be operated on (consider UPC code plus record of
data about that item)

• If too large, index (in memory) of the index (on disk)

• IBM indexed sequential-access method (ISAM)

– Small master index, points to disk blocks of secondary
index

– File kept sorted on a defined key

– All done by the OS

• VMS operating system provides index and relative files as
another example (see next slide)

BMS Institute of Technology & Mgmt Department of ISE

Example of Index and Relative Files

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Directory Structure

• A collection of nodes containing
information about all files

F 1 F 2
F 3

F 4

F n

Directory

Files

Both the directory structure and the files reside on disk

BMS Institute of Technology & Mgmt Department of ISE

Disk Structure

• Disk can be subdivided into partitions

• Disk or partition can be used raw – without a file system, or
formatted with a file system

• Partitions also known as minidisks, slices

• Entity containing file system known as a volume

• Each volume containing file system also tracks that file system’s
info in device directory or volume table of contents

• As well as general-purpose file systems there are many special-
purpose file systems, frequently all within the same operating
system or computer

BMS Institute of Technology & Mgmt Department of ISE

A Typical File-system Organization

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Operations Performed on Directory

• Search for a file

• Create a file

• Delete a file

• List a directory

• Rename a file

• Traverse the file system

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Directory Organization

• Efficiency – locating a file quickly

• Naming – convenient to users

– Two users can have same name for different
files

– The same file can have several different
names

• Grouping – logical grouping of files by
properties, (e.g., all Java programs, all
games, …)

The directory is organized logically to obtain

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Directory structures

• Single level Directory

• Two level Directory

• Tree structured directories

• Acyclic- Graph Directories

• General Graph Directory

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Single-Level Directory
• Simplest directory structure

• All the files are there in the same directory

• A single directory for all users

Adv(easy to understand and support)

Disadvantages
• Naming problem (if file /user increases)

• Grouping problem (content is same but name is diff)

• Length limit (DOS-11, Unix-255char)

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Two-Level Directory
• Separate directory for each user(UFD)

 Isolation

 Can have the same file name for different user but do not allow cooperative

task

 Tree /inverted tree of height 2

 Path name(username, file name)

 Addition syntax needed to specify the volume

 (C:\User2\test) u:[sst.jdeck]login.com;1

 Efficient searching

 Special directory for system files

 No grouping capability

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Tree-Structured Directories

• This generalization allows user to create their own
subdirectories

• All dir has same internal format, each bit to directory
• File(0)/subdirectory(1)

• Spl sys call for create/delete/rename directories

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Tree-Structured Directories (Cont.)

• Efficient searching

• Grouping Capability

• Current directory (working directory)
– cd /spell/mail/prog

– type list

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Tree-Structured Directories (Cont)

• Absolute or relative path name

• Creating a new file is done in current directory

• Delete a file

 rm <file-name>

• Creating a new subdirectory is done in current
directory

 mkdir <dir-name>

 Example: if in current directory /mail

 mkdir count

Deleting “mail”  deleting the entire subtree rooted by “mail”

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Acyclic-Graph Directories

• Have shared subdirectories and files

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Acyclic-Graph Directories (Cont.)

 New directory entry type

– Link – another name (pointer) to an existing file

– Resolve the link – follow pointer to locate the file

Disadvantages

• Two different names (aliasing)

• If dict deletes list  dangling pointer
– Use links

– Preserve file until all references are deleted (hardlink count=0)

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

General Graph Directory

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

General Graph Directory (Cont.)

• Cycles

– Limit the search to avoid searching in
loop

– Deleting file

• How do we guarantee no cycles?

– Allow only links to file not subdirectories

– Garbage collection

– Every time a new link is added use a cycle
detection algorithm to determine
whether it is OK

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

File System Mounting
• A file system must be mounted before it can be

accessed

• A unmounted file system (i.e., Fig. 11-11(b)) is
mounted at a mount point

BMS Institute of Technology & Mgmt Department of ISE

Mount Point

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

File Sharing

• Sharing of files on multi-user systems is desirable

• Sharing may be done through a protection scheme

• On distributed systems, files may be shared across a
network

• Network File System (NFS) is a common distributed
file-sharing method

• If multi-user system

– User IDs identify users, allowing permissions and
protections to be per-user
Group IDs allow users to be in groups, permitting
group access rights

– Owner of a file / directory

– Group of a file / directory

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

File Sharing – Remote File Systems
• Uses networking to allow file system access between systems

– Manually via programs like FTP

– Automatically, seamlessly using distributed file systems

– Semi automatically via the world wide web

• Client-server model allows clients to mount remote file systems
from servers

– Server can serve multiple clients

– Client and user-on-client identification is insecure or
complicated(use of encrypted keys)

• Distrubuted Information Systems

– NFS is standard UNIX client-server file sharing protocol

– CIFS (common internet File sys)is standard Windows protocol

• Distributed Information Systems (distributed naming services)
such as LDAP, DNS, NIS, Active Directory implement unified
access to information needed for remote computing

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

File Sharing – Failure Modes
• All file systems have failure modes

• Local file sys failure of disk, corruption of
directory structures or other non-user data, called
metadata, disk controller failure, cable failure
– host to crash and an error condition to be displayed, and

human intervention will be required to repair the damage

• Remote file systems add new failure modes,
due to network failure, server failure, the
network can be interrupted between two
hosts.

– Some networks have built-in resiliency,
including multiple paths between hosts, many
do not.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

• EG: Consider a client in the midst of using a remote file
system. It has files open from the remote host; Suddenly, the
remote file system is no longer reachable

• Most DFS protocols either enforce or allow delaying of file-
system operations to remote hosts, with the hope that the
remote host will become available again

• Recovery from failure can involve state information about
status of each remote request

• Stateless protocols such as NFS v3 include all information in
each request, allowing easy recovery but less security

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

File Sharing – Consistency Semantics
• Specify how multiple users are to access a

shared file simultaneously

– Similar to Ch 5 process synchronization algorithms
• Tend to be less complex due to disk I/O and network

latency (for remote file systems)

– Andrew File System (AFS) implemented complex
remote file sharing semantics

– The series of accesses between the open() and
close () operations makes up a file session.

• Unix file system (UFS) implements:
• Writes to an open file visible immediately to other users

of the same open file

• Sharing file pointer to allow multiple users to read and
write concurrently

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

• AFS has session semantics
• Writes only visible to sessions starting after the file is closed.

• Once a file is closed, the changes made to it are visible only in
sessions starting later. Already open instances of the file do not
reflect these changes

• In the UNIX semantics, a file is associated with a single physical
image that is accessed as an exclusive resource. Contention for this
single image causes delays in user processes.

• In AFS semantics a file may be associated temporarily with several
(possibly different) images at the same time. Consequently,
multiple users are allowed to perform both read and write accesses
concurrently on their images of the file, without delay. Almost no
constraints are enforced on scheduling accesses.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Immutable-Shared-Files Semantics

• Unique approach Once a file is declared as shared
by its creator, it cannot be modified.

• An immutable file has two key properties:

– Its name may not be reused, and its contents may not be
altered.

• Thus, the name of an immutable file signifies that
the contents of the file are fixed.

• The implementation of these semantics in a
distributed system is simple, because the sharing is
disciplined (read-only).

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Protection
• File owner/creator should be able to

control:

– what can be done

– by whom

• Types of access

– Read

– Write

– Execute

– Append

– Delete

– List

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Access Lists and Groups

• Mode of access: read, write, execute

• Three classes of users on Unix / Linux
 RWX
 a) owner access 7  1 1 1

 RWX
 b) group access 6  1 1 0
 RWX
 c) public access 1  0 0 1

• Ask manager to create a group (unique name),
say G, and add some users to the group.

• For a particular file (say game) or subdirectory,
define an appropriate access.

 chgrp G game

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Windows 7 Access-Control List Management

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

A Sample UNIX Directory Listing

End of Chapter 11

Chapter 10: File System
Implementation

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

 Chapter 10: File System Implementation

• File-System Structure

• File-System Implementation

• Directory Implementation

• Allocation Methods

• Free-Space Management

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Objectives
• To describe the details of implementing local

file systems and directory structures

• To describe the implementation of remote
file systems

• To discuss block allocation and free-block
algorithms and trade-offs

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

File-System Structure
• File structureLogical storage unit, Collection of related information

• File system resides on secondary storage (disks)

– Provided user interface to storage, mapping logical to physical

– Provides efficient and convenient access to disk by allowing data to be
stored, located retrieved easily

• Disk provides in-place rewrite and random access

– I/O transfers performed in blocks of sectors (usually 512 bytes)

• A File system poses two quite different design problems.

1. how the file system should look to the user.

2. Creating algorithms and data structures to map the logical file system
onto the physical secondary-storage devices.

• File control block – storage structure consisting of information about a file

• Device driver controls the physical device

• File system organized into layers

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Layered File System

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

File System Layers
• Device drivers manage I/O devices at the I/O control layer

– Given commands like “read drive1, cylinder 72, track 2,
sector 10, into memory location 1060” outputs low-level
hardware specific commands to hardware controller

n Basic file system given command like “retrieve block 123”
translates to device driver

n Also manages memory buffers and caches (allocation, freeing,
replacement)

n Buffers hold data in transit

n Caches hold frequently used data

n File organization module understands files, logical address,
and physical blocks

n Translates logical block # to physical block #

n Manages free space, disk allocation

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

File System Layers (Cont.)

n Logical file system manages metadata information

n Translates file name into file number, file handle, location by maintaining file
control blocks (inodes in Unix)

n Directory management

n Protection

n Layering useful for reducing complexity and redundancy, but adds overhead and can
decrease performance

n Logical layers can be implemented by any coding method according to OS designer

n Many file systems, sometimes many within an operating system

n Each with its own format (CD-ROM is ISO 9660; Unix has UFS, FFS; Windows has
FAT, FAT32, NTFS as well as floppy, CD, DVD Blu-ray, Linux has more than 40 types,
with extended file system ext2 and ext3 leading; plus distributed file systems, etc)

n New ones still arriving – ZFS, GoogleFS, Oracle ASM, FUSE

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

File-System Implementation
• We have system calls at the API level, but how do we implement their

functions?

– On-disk and in-memory structures

• Boot control block contains info needed by system to boot OS from that
volume(UFSboot block, NTFS partition boot sector)

– Needed if volume contains OS, usually first block of volume

• Volume control block (superblock, master file table) contains volume
details

– Total # of blocks, # of free blocks, block size, free block pointers or
array

• Directory structure organizes the files

– UFSNames and inode numbers, NTFSmaster file table

• Per-file File Control Block (FCB) contains many details about the file

– Inode number, permissions, size, dates(UFS inode)

– NTFS stores into in master file table using relational DB structures

BMS Institute of Technology & Mgmt Department of ISE

A Typical File Control Block

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

In-Memory File System Structures
• In-memory Mount table contains information about each mounted

volume.

• in-memory directory-structure cache holds the directory information

 of recently accessed directories.

• The system-wide open-file table contains a copy of the FCB of each open

 file, as well as other information.

• The per-process open-file table contains a pointer to the appropriate
entry in the system-wide open-file table, as well as other information.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Partitions and Mounting
• Partition can be a volume containing a file system (“cooked”) or raw – just a

sequence of blocks with no file system

• Boot block can point to boot volume or boot loader set of blocks that contain
enough code to know how to load the kernel from the file system

– Or a boot management program for multi-os booting

• Root partition contains the OS, other partitions can hold other OSes, other file
systems, or be raw

– Mounted at boot time

– Other partitions can mount automatically or manually

• At mount time, file system consistency checked

– Is all metadata correct?

• If not, fix it, try again

• If yes, add to mount table, allow access

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Virtual File Systems

• Virtual File Systems (VFS) on Unix provide an object-oriented way of
implementing file systems

• VFS allows the same system call interface (the API) to be used for different
types of file systems

– Separates file-system generic operations from implementation details

– Implementation can be one of many file systems types, or network file
system

• Implements vnodes which hold inodes or network file details

– Then dispatches operation to appropriate file system implementation
routines

• The API is to the VFS interface, rather than any specific type of file system

BMS Institute of Technology & Mgmt Department of ISE

Schematic View of Virtual File
System

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Virtual File System Implementation

• For example, Linux has four object types:

– inode, file, superblock, dentry

• VFS defines set of operations on the objects that
must be implemented

– Every object has a pointer to a function table

• Function table has addresses of routines to implement that
function on that object

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Directory Implementation
• Linear list of file names with pointer to the data blocks

– Simple to program

– Time-consuming to execute

• Linear search time

• Could keep ordered alphabetically via linked list or use B+ tree

• Hash Table – linear list with hash data structure

– Decreases directory search time

– Collisions – situations where two file names hash to the same location

– Only good if entries are fixed size, or use chained-overflow method

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Allocation Methods - Contiguous
• An allocation method refers to how disk blocks are allocated for

files:

• Contiguous allocation – each file occupies set of contiguous
blocks

– Best performance in most cases

– Simple – only starting location (block #) and length (number
of blocks) are required

– Problems include finding space for file, knowing file size,
external fragmentation, need for compaction off-line
(downtime) or on-line

BMS Institute of Technology & Mgmt Department of ISE

Contiguous Allocation of Disk Space

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Extent-Based Systems

• Many newer file systems (i.e., Veritas File System) use a modified
contiguous allocation scheme

• Extent-based file systems allocate disk blocks in extents

• An extent is a contiguous block of disks

– Extents are allocated for file allocation

– A file consists of one or more extents

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Allocation Methods - Linked

• Linked allocation – each file a linked list of blocks(508 bytes instead of 512)

– File ends at nil pointer

– No external fragmentation

– Each block contains pointer to next block

– No compaction, external fragmentation

– Free space management system called when new block needed

– Improve efficiency by clustering blocks into groups but increases internal fragmentation

– Reliability can be a problem

– Locating a block can take many I/Os and disk seeks

• FAT (File Allocation Table) variation

– Beginning of volume has table, indexed by block number

– Much like a linked list, but faster on disk and cacheable

– New block allocation simple

BMS Institute of Technology & Mgmt Department of ISE

Linked Allocation

BMS Institute of Technology & Mgmt Department of ISE

File-Allocation Table

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Allocation Methods - Indexed

• Indexed allocation

– Each file has its own index block(s) of pointers to its
data blocks

• Logical view

index table

BMS Institute of Technology & Mgmt Department of ISE

Example of Indexed Allocation

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Indexed Allocation (Cont.)
• Need index table

• Random access

• Dynamic access without external fragmentation, but
have overhead of index block

• Mapping from logical to physical in a file of maximum
size of 256K bytes and block size of 512 bytes. We
need only 1 block for index table

• how big the index block should be, and how it should
be implemented. There are several approaches:
– Linked Scheme

– Multi-Level Index

– Combined Scheme

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

1. Linked Scheme
• An index block is one disk block, which can be

read and written in a single disk operation.

• The first index block contains some header
information

• The first N block addresses, and if necessary a
pointer to additional linked index blocks.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

2.Multi-Level Index

• The first index block contains a set of pointers to
secondary index blocks, which in turn contain
pointers to the actual data blocks.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

3. Combined Scheme

• This is the scheme used in UNIX inodes

• The advantage of this scheme is that
– for small files (files stored in less than 12 blocks), the data blocks are

readily accessible (up to 48K with 4K block sizes);

– files up to about 4144K (using 4K blocks) are accessible with only a

single indirect block (which can be cached),

– and huge files are still accessible using a relatively small number of
disk accesses

BMS Institute of Technology & Mgmt Department of ISE

Combined Scheme: UNIX UFS
(4K bytes per block, 32-bit addresses)

Note: More index
blocks than can
be addressed
with 32-bit file
pointer

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Performance
• Best method depends on file access type

– Contiguous great for sequential and random

• Linked good for sequential, not random

• Declare access type at creation -> select either
contiguous or linked

• Indexed more complex

– Single block access could require 2 index block reads
then data block read

– Clustering can help improve throughput, reduce CPU
overhead

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Performance (Cont.)
• Adding instructions to the execution path to

save one disk I/O is reasonable

– Intel Core i7 Extreme Edition 990x (2011) at 3.46Ghz
= 159,000 MIPS

• http://en.wikipedia.org/wiki/Instructions_per_second

– Typical disk drive at 250 I/Os per second

• 159,000 MIPS / 250 = 630 million instructions during one
disk I/O

– Fast SSD drives provide 60,000 IOPS

• 159,000 MIPS / 60,000 = 2.65 millions instructions during
one disk I/O

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Free-Space Management

• File system maintains free-space list to track
available blocks/clusters

– The list which keep tracks of free space in memory
 free space list

• To create a file

• search the free-space list for the required amount of space
and allocate that space to the new file.

• This space is then removed from the free space list.

• When a File is deleted,

• its disk space is added to the free-space list.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Free Space list implementation

• Bit Vector

• Linked List

• Grouping

• Counting

• Space Maps (New)

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Bit vector
• Fast algorithms exist for quickly finding contiguous blocks of a

given size

• One simple approach is to use a bit vector, in which each bit
represents a disk block, set to 1 if free or 0 if allocated.

• EG: consider a disk where blocks 2,3,4,5,8,9, 10,11, 12, 13,
17and 18 are free, and the rest of the blocks are allocated.
The free-space bit map would be 0011110011111100011

• Adv:
– Easy to implement and also very efficient in finding the first free block

or consecutive free blocks on the disk.

• Disadv Bit map requires extra space
– Example: block size = 4KB = 212 bytes

 disk size = 240 bytes (1 terabyte)

 n = 240/212 = 228 bits (or 256 MB)

 if clusters of 4 blocks -> 64MB of memory

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Linked list
• A linked list can also be used to keep track of all free blocks.
• Traversing the list and/or finding a contiguous block of a given

size are not easy, but fortunately are not frequently needed
operations.

• Generally the system just adds and removes single blocks from

the beginning of the list. (No waste of space)

• The FAT table keeps track of the free list as just one more

linked list on the table. (No need to traverse the entire list
(if # free blocks recorded)

BMS Institute of Technology & Mgmt Department of ISE

Linked Free Space List on Disk

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Grouping

– Modify linked list

– to store address of next n-1 free blocks in first free
block, The first n-1 blocks are actually free.

– The last block contains the addresses of another n
free blocks, and so on

– Adv
• The address of a large number of free blocks can be found

quickly.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Counting

– When there are multiple contiguous blocks of free
space then the system can keep track of the starting
address of the group and the number of contiguous
free blocks.
• Keep address of first free block and count of following free

blocks

• Thus the overall space is shortened. It is similar to the
extent method of allocating blocks.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Space Maps
– Used in ZFS designed for huge numbers and size of files,

directories and even file systems

– Consider meta-data I/O on very large file systems
• Full data structures like bit maps couldn’t fit in memory -> thousands of

I/Os

– Divides device space into metaslab units and manages metaslabs
• Given volume can contain hundreds of metaslabs

– Each metaslab has associated space map
• Uses counting algorithm

– But records to log file rather than file system
• Log of all block activity, in time order, in counting format

– Metaslab activity -> load space map into memory in balanced-tree
structure, indexed by offset
• Replay log into that structure

• Combine contiguous free blocks into single entry

End of Chapter 10

Mod-5 : Disk Management & Swap
space management

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Disk Management
• Disk Formatting

– low-level formatting

– Partition

– logical formatting

• Boot Block

• Bad Blocks

– sector sparing or forwarding

– sector slipping.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Disk Formatting
• The process of dividing the disk into sectors and filling the disk with a

special data structure is called low-level formatting.

• Most hard disks are low-level-formatted at the factory .

• The operating system needs to record its own data structures on the
disk. It does so in two steps partition and logical formatting.
– Partition-– is to partition the disk into one or more groups of cylinders

– logical formatting (or creation of a file system) - Now, the operating system stores
the initial file-system data structures onto the disk

• To increase efficiency, most file systems group blocks together into
larger chunks, frequently called clusters.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Boot Block
• When a computer is switched on or rebooted—it must

have an initial program to run. This is called the
bootstrap program.

• The bootstrap program
• initializes the CPU registers, device controllers, main memory,

and then starts the operating system.

• Locates and loads the operating system from the disk

• jumps to beginning the operating-system execution.

• The bootstrap is stored in read-only memory (ROM). disadv

• A disk that has a boot partition is called a boot disk or system
disk.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Booting from a Disk in windows

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Bad Blocks
• Group of sectors that are defective are called as bad

blocks.

• Different ways to overcome bad blocks are -
• Some bad blocks are handled manually, eg. In MS-DOS.

• Some controllers replace each bad sector logically with one of the spare
sectors(extra sectors). The schemes used are sector sparing or
forwarding.

• Method utilized to push down defective sector is called sector slipping

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

SWAP SPACE MANAGEMENT

• The amount of swap space needed on a system can vary depending on
– the amount of physical memory, the amount of virtual memory it is backing, and

the way in which the virtual memory is used.

• The swap space can overestimated or underestimated.

• It is safer to overestimate than to underestimate the amount of swap
space required.

Swap-Space Location

• A swap space can reside in one of two places
• file system file system routines will be used

• separate disk partition  separate swap- space storage manager is used

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Swap-Space Management: An Example
• Solaris allocates swap space only when a page is forced out of

physical memory, rather than when the virtual memory page
is first created.

• Linux allows one or more swap areas to be established
– Each swap area consists of a series of 4-KB page slots

– Associated with each swap area is a swap map —an array of integer
counters, each corresponding to a page slot in the swap area

– If the value of a counter is 0, the corresponding page slot is
available.

– Values greater than 0 indicate that the page slot is occupied by a
swapped page.

– a value of 3 indicates that the swapped page is mapped to three
different processes

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Data Structures for swapping in Linux
systems

Mod-5 : Protection

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Topics

• Goals of Protection

• Principles of Protection

• Domain of Protection

• Access Matrix

• Implementation of Access Matrix

• Access Control

• Revocation of Access Rights

• Capability-Based Systems

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Goals of Protection

• Protection is a mechanism for controlling the access of programs,
processes, or users to the resources defined by a computer system.

• Originally protection was conceived as an adjunct to
Multiprogramming OS so that untrustworthy users ,might safely share
a common logical name space.

• Modern Protection concepts have evolved to increase the reliability of
any complex system that shared resources.(access restriction).

• By Providing Policies and mechanism.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Principles of Protection

• A key, time-tested guiding principle for protection is the
‘principle of least privilege’.

• It dictates that programs, users, and even systems be given
just enough privileges to perform their tasks.

• An operating system provides mechanisms to enable
privileges when they are needed and to disable them when

they are not needed. Role based access control (RBAC)

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

DOMAIN OF PROTECTION

• A computer system is a collection of processes and objects.
– Objects are both hardware objects (such as the CPU, memory segments, printers,

disks, and tape drives)

– software objects (such as files, programs, and semaphores).

• Each object (resource) has a unique name that differentiates it from
all other objects in the system.

• Eg
– CPU only execute

– Mem read/Write

• Protection problem - ensure that each object is accessed correctly and
only by those processes that are allowed to do so.

• Need to know principle

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Domain Structure
• A domain is a set of objects and types of access to these objects.

• The ability to execute an operations on an object  Access right

• Access Right=<object-name,rights-set>.

– where rights-set is a subset of all valid operations that can be performed on
the object.

• Domains do not need to be disjoint they may share access rights

• A domain can be realized in a variety of ways:
– Each user may be a domain

– Each process may be a domain

– Each procedure may be a domain.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

ACCESS MATRIX
• The model of protection can be viewed as a

matrix, called an access matrix.

• Rows represent domains

• Columns represent objects

• Access(i, j) is the set of operations that a process
executing in Domaini can invoke on Objectj

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

• If a process in Domain Di tries to do “op” on object Oj, then
“op” must be in the access matrix

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Use of Access Matrix

• Can be expanded to dynamic protection

– Operations to add, delete access rights

– Special access rights:

• owner of Oi

• copy op from Oi to Oj

• control – Di can modify Dj access rights

• transfer – switch from domain Di to Dj

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

• Access matrix design separates mechanism from
policy

– Mechanism

• Operating system provides access-matrix + rules

• If ensures that the matrix is only manipulated by authorized
agents and that rules are strictly enforced

– Policy

• User dictates policy

• Who can access what object and in what mode

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Access Matrix as Domains as Objects

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Access Matrix with Copy Rights

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Copy Right

• A right is copied from access(i,j) to access(k,j); it is then
removed from access(i,j). This action is a transfer of a
right, rather than a copy.

• Propagation of the copy right- limited copy. Here, when
the right R* is copied from access(i,j) to access(k,j), only
the right R (not R*) is created.

• A process executing in domain Dk cannot further copy
the right R.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Access Matrix With Owner Rights

• mechanism addition of new rights and
removal of some rights (Owner)

• If access(i,j) includes the owner right, then a
process executing in domain Di, can add and
remove any right in any entry in column j.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Access Matrix With Owner Rights

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Access Matrix (Control)

• A mechanism is also needed to change the
entries in a row.

• If access(i,j) includes the control right, then a
process executing in domain Di, can remove any
access right from row j

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Access Matrix (Control)

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Implementation of Access Matrix

Different methods of implementing the access
matrix

• Global Table

• Access Lists for Objects

• Capability Lists for Domains

• Lock-Key Mechanism

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Global Table
• Simplest implementation

• A set of ordered triples <domain, object, rights-set> is
maintained in a file

• Whenever an operation M is executed on an object Oj, within
domain Di,
– the table is searched for a triple <Di, Oj, Rk>.

– If this triple is found, the operation is allowed to continue;

– otherwise, an exception (or error) condition is raised.

Drawbacks

• The table is usually large and thus cannot be kept in main memory.

• Additional I/O is needed

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Access Lists for Objects
• Each column in the access matrix can be implemented as an

access list for one object

• The empty entries are discarded

• each object consists of ordered pairs <domain, rights-set>

• When an operation M is executed on object Oj in Di,

– search the access list for object Oj, look for an entry <Di, Rj > with M ∈ Kj.

– If the entry is found, we allow the operation;

– if it is not, we check the default set.

– If M is in the default set, we allow the access.

– Otherwise, access is denied, and an exception condition occurs.

– For efficiency, we may check the default set first and then search the
access list.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Capability Lists for Domains
• Is a list of objects together with the operations allowed on those

objects.

• An object is often represented by its name or address, called a
capability

• To execute operation M on object Oj, the process executes the
operation M, specifying the capability for object Oj as a parameter.

• Capabilities are usually distinguished from other data in one of two
ways:

i. Each object has a tag to denote its type either as a capability or as
accessible data.

ii. the address space associated with a program can be split into two parts

a) accessible to the program and contains the program's normal data and instructions

b) containing the capability list, is accessible only by the operating system

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

A Lock-Key Mechanism

• The lock-key scheme is a compromise between access lists and
capability lists.

• Each object has a list of unique bit patterns, called locks.

• Similarly, each domain has a list of unique bit patterns, called keys.

• A process executing in a domain can access an object only if that
domain has a key that matches one of the locks of the object.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Comparison
Access
Matrix Type

Adv Drawback

Global Table

simple; however, the table can be quite large
and often cannot take advantage of
special groupings of objects or domains

Access lists

directly to the needs of users • determining the set of access rights
for each domain is difficult.

• In a large system with long access
lists, search can be time
consuming.

Capability list Useful for localizing information
for a given process

• do not correspond directly to the
needs of users

• Revocation of capabilities, however,
may be inefficient

Lock-key • effective and flexible,
depending on the length of
the keys.

• access privileges can be
effectively revoked

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

• Most systems use a combination of access lists and capabilities.

• When a process first tries to access an object, the access list is
searched.

• If access is denied, an exception condition occurs.

• Otherwise, a capability is created and attached to the process.

• Additional references use the capability to demonstrate swiftly that
access is allowed.

• After the last access, the capability is destroyed.

• This strategy is used in the MULTICS system and in the CAL system.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Access Control

• Protection can be applied to non-file resources

• Solaris 10 provides role-based access control
(RBAC) to implement least privilege

– Privilege is right to execute system call or use an
option within a system call

– Can be assigned to processes limiting them to exactly
the access they need to perform their work

– Privileges and programs can also be assigned to roles

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Role based Access Control in Solaris10
– Users are assigned roles or can take roles based on passwords to the roles

– This implementation of privileges decreases the security risk associated with
superusers and setuid programs.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Revocation of Access Rights

• In a dynamic protection system, we may
sometimes need to revoke access rights to
objects shared by different users.

– Immediate Vs. delayed

– Selective Vs. general.

– Partial Vs. total.

– Temporary Vs. permanent.

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Revocation of Access Rights
• Access List – Delete access rights from access list

– Simple

– Immediate

• Capability List – Scheme required to locate capability in the system before

capability can be revoked

– Reacquisition: Periodically, capabilities are deleted from each domain

• If a process wants to use a capability, it may find that that capability has been
deleted.

• The process may then try to reacquire the capability.

• If access has been revoked, the process will not be able to reacquire the
capability.

– Back-pointers: A list of pointers is maintained with each object, pointing to all
capabilities associated with that object.(MULTICS)

• When revocation is required, we can follow these pointers, changing the
capabilities as necessary

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Revocation of Access Rights

– Indirection: Each capability points to a unique entry in a global
table, which in turn points to the object. We implement
revocation by searching the global table for the desired entry and
deleting it.(CAL)

– Keys: A master key is associated with each object; it can be
defined or replaced with the set-key operation ,
• If the keys match, the operation is allowed to continue; otherwise, an

exception condition is raised

• should not be available to all users

BMS Institute of Technology & Mgmt Department of ISE Department of ISE

Capability-Based Systems
• Hydra

– Fixed set of access rights known to and interpreted by the system

– Interpretation of user-defined rights performed solely by user's
program; system provides access protection for use of these rights

• Cambridge CAP System

CAP's capability system is simpler and superficially less powerful

than that of Hydra.
– Data capability - provides standard read, write, execute of

individual storage segments associated with object

– Software capability -interpretation left to the subsystem, through
its protected procedures

